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Abstract—Software-based service chains in Network Function
Virtualization (NFV) typically suffers high processing latency.
This latency grows as chain lengths increase and possibly violates
application requirements. Previous efforts focus on reducing
latency while maintaining the perspective of each NF being an
independent, isolated module. This results in processing redun-
dancy that could eventually become the performance bottleneck.

In this paper, we propose a low-latency NFV framework
called SpeedyBox, that innovatively enables cross-NF runtime
optimizations in a service chain to eliminate processing redun-
dancy. SpeedyBox builds a fast data path for flows at runtime
by consolidating the aggregate actions across diverse network
functions (NFs) in a service chain. In SpeedyBox, each NF is
instrumented with a stateful Local Match-Action Table (MAT),
and leverages our easy-to-use APIs to record its per-flow behavior
in the Local MAT. Next, SpeedyBox uses a Global MAT to build
the fast data path by consolidating actions from each Local
MAT, while providing the ability to express the stateful NF
behaviors with an Event Table. We have implemented a prototype
of SpeedyBox on the BESS and OpenNetVM NFV platforms. Our
trace-driven evaluation on common NFs shows that SpeedyBox
achieves significant latency reduction under real world scenarios.
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I. INTRODUCTION

The recent trend in Network Function Virtualization (NFV)
is to implement data-plane focused network functions (NFs) in
software to achieve more elastic management and lower cost
for networked systems [37], [35], [33]. NFs are often connected
together to form a sequential service chain. The performance
requirement for NFV is becoming increasingly stringent (e.g.,
latency targets of 0.5ms for edge cloud processing [5], [8]).
However, software-based NFs (chain) suffer from high latency,
which in some cases can become unacceptable when packets
traverse a long chain (e.g., up to ten NFs) [19], [27], [23].

A common practice is to co-locate all (or most) NFs in a
chain on the same physical server, which reduces cross-server
communication overhead [24], [32], [38], [19], [27], [23], [46].
Based on this practice, several solutions have been proposed
to accelerate packet processing of NFs and service chains. We
summarize two sets of previous work: (1) A set of approaches
that focus on accelerating a section of the data path, including
the use of special hardware (FPGA [25] and GPU [21], [41]),
the use of software isolation (Netbricks [30]) to speed up the
performance of a single NF, and introducing shared memory
for packet delivery between NFs (NetVM [19]) to speed up
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the service chains. (2) Another body of work proposes to

parallelize NFs execution to accelerate service chains (NFP

[38] and Parabox [47]), leveraging the fact that some NF pairs

do not have dependencies and can be executed in parallel.

Nevertheless, the above two broad NF (chain) processing
optimizations hold a common assumption: NFs are modular,
and the boundary between neighboring NFs in a chain still
remains. Specifically, systems that hold this assumption can
lead to redundant processing such as repeated parsing and
classification, dropping packets late in the service chain (e.g., a
packet that has been processed by an upstream NF is dropped
by the downstream NF), packet overwriting and redundant IO.
Thus, we argue that existing systems are far from optimal, and
there is an upper limit of how much the NF chains can be
sped up. Without a cross-NF optimization that consolidates
the processing actions of different NFs, these redundancy still
exist and could inevitably become the performance bottleneck
as chain lengths increase.

The question now becomes: how can we achieve cross-NF
optimization? We closely dissect and analyze the behaviors of
modern NFs in enterprise networks [35], and observe that the
per-flow behavior of an NF does not change unless an event that
changes the NF behavior occurs. We can leverage this domain-
specific insight to perform cross-NF optimizations. If there is
no event happening, we can consolidate the aggregated actions
across NFs as the initial packets of a flow traverse the chain,
and can directly apply the consolidated action on subsequent
packets, without having them traverse the original service chain
all over again. Moreover, we analyze the behaviors of modern
NFs and find that events do not happen frequently, which further
enhances the motivation. We call this optimization cross-NF
runtime consolidation in this paper. Our approach is orthogonal
and complementary to the previous approaches we mentioned.

While cross-NF runtime consolidation is an ideal vision for
improving the performance of service chains, realizing it in
practice does involve two major challenges:

o Challenge 1: How to collect the runtime behavior of different
NFs at minimum cost? NFs are usually heterogeneous from
each other, containing diverse logic and processing actions on
packets and internal states. To perform runtime consolidation,
the primary concern is how to understand and collect NF
behaviors. This requires (1) describing the behaviors of
diverse NFs with a uniform abstraction and (2) extracting
that behaviors at minimum cost.

e Challenge 2: How to express the stateful behavior of a
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service chain on a new, consolidated path? Most modern
NFs are stateful [15], [16], [40] and so are the associated
chains. Building a new data path needs to ensure that the
state is properly handled. Furthermore, the packet output
should be identical to that of the original chain. Some
similar mechanisms in existing works such as [31], [35],
[12], [14] are not applicable to express the stateful and

complex behaviors in the context of NFV service chains.
To address the challenges, we propose a novel NFV frame-

work named SpeedyBox that innovatively leverages cross-NF
runtime consolidation to improve service chain performance.
Overall, SpeedyBox has three logical components: the Local
Match-Action Table (MAT), a Global MAT and an Event
Table. Each NF is associated with a Local MAT; as the
initial packet of each flow traverses the chain, each NF uses
SpeedyBox instrumentation APIs to record its processing
behavior, including actions on packet and NF state, and
populates a record in the Local MAT. Then, the Global MAT
aggregates and consolidates the actions from each Local MAT
to set up a fast data path; all subsequent packets of the flow
would directly go through this fast path with all processing
on the fast data path being optimized for faster execution.
During the processing, the Event Table constantly checks if
any condition is matched to trigger an associated event (e.g.,
updates to the routing configuration) that changes NF behaviors
at runtime, to guarantee the normal functionality of NFs.

SpeedyBox achieves high performance without causing
laborious overhead for the NF developers. We provide easy-
to-use APIs that minimize modifications on the code for an
NF. Since the APIs seek to only record NF behaviors, the
modifications do not change the original processing logic and
are lightweight. For example, our modification on the Snort
IDS [34] only adds up to 27 lines of code.

There are legitimate concerns regarding the isolation between
NFs [27]. Additionally, approaches such as OpenNetVM [46]
simplify deployment by having NFs in distinct containers so
that NFs may be independently developed. However, this is
an issue of tradeoffs - isolation, simplicity and flexibility in
deployment often come at the cost of performance. Where per-
formance is the dominant consideration, approaches such as [2],
[30], [17] operate at the other end of the spectrum, having all
the NFs integrated into a monolithic process. The approach in
this paper seeks to strike a balance, by accommodating inde-
pendent NFs in a service chain within containers. But by using
a small set simple APIs we provide, developers can support
SpeedyBox effectively. Network providers deploying NFV can
work with NF vendors to extract the processing actions and
enable consolidation across multiple NFs as we describe in
this paper. We argue that it is worthwhile to tradeoff the small
amount of programming overhead and deployment effort for
obtaining the high performance of the entire service chain.
SpeedyBox still seeks to support deployment of independently
developed NFs without necessarily having to consolidate them
in a single monolithic process.

This paper makes the following contributions:

o We design SpeedyBox, a novel low-latency NFV framework
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that exploits cross-NF runtime consolidation to reduce the
processing redundancy in a service chain.

« We present a novel NF processing abstraction guided by the
behaviors of modern NFs, and then describe how we build
the Local MAT for each NF using SpeedyBox’s APIs that are
lightweight and easy-to-use. For example, our modification
on Snort IDS only adds 27 lines of code. (§IV)

« Based on our NF processing abstraction, we propose a Global
MAT that consolidates the processing actions from different
NFs, while retaining the stateful behaviors of NFs with the
Event Table. (§V)

« We have implemented the SpeedyBox prototype and five
common NFs on both the BESS [2] and OpenNetVM
platforms [46]. We have open-sourced our code [1]. (§VI)

o Our comprehensive evaluations show that SpeedyBox can
significantly reduce latency, while strictly retaining the
stateful behaviors of the original NFs. (§VII)

II. CONTEXT AND CHALLENGES

A. Background and Motivation

Low-latency NFV service chains are critical. There are
increasing number of applications that demand low end-to-end
latency, which put stringent requirement on the processing
delay of in-network NFs (and chains) [38]. For instance, the
per-packet processing time at the mobile edge cloud needs
to be less than 0.5ms [5], [8]. If the requirement is violated,
it can have a significantly negative impact on the quality of
experience and normal functioning of applications [10], [39].

Redundancy is pervasive in NFV processing. Despite
existing optimizations on NFV performance, we still observe
redundant processing when a packet flow is being processed by
a service chain. Consider a typical service chain derived from
[24]: NAT—Load Balancer—Monitor—Firewall. We analyze
four kinds of processing redundancy that this chain could incur:

e RI: Repeated parsing and classification. Each of the four
NFs in the chain needs to perform the same parsing and
classification steps on each packet, when ideally all we need
is one parsing and one classification step [12];

o R2: Late packet drop. Packets that go through the NAT, Load
Balancer and Monitor may then be dropped by the Firewall.
The redundant and wasted processing inevitably degrades
performance. Instead, it would be better to drop the packet
at the beginning of the service chain [43], [23];

e R3: Packet overwrite. A NAT may modify the destination
IP of the packet, but the downstream Load Balancer may
further modify the same field, thus overwriting that header
field. If we can merge the two modifications, processing and
latency can be further reduced [14];

o R4: Redundant 10 caused by isolation. The performance
degradation in NFV brought about by isolation has been well
studied [43], [46], [44], [18]. Even in our focused scenario
where the entire service chain is put on a single machine,
there still exists VM-based [27], [19] or container-based
[23], [46], [18] isolation. This isolation inevitably incurs
redundant IO and cross-core communication. Note that we
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are not arguing against the isolation, but instead, we argue
that a consolidated approach can mitigate such overhead by
reducing wasteful communication.

All of these redundancy can significantly add to the process-
ing latency. For example, according to our measurements (§VII),
overwriting the packet (R3) twice can increases the latency by
about 2x. Existing work only partially resolves these [12], [43],
[23], [14]. Overcoming all the redundancy simultaneously is
not possible unless we enable cross-NF optimizations across
the entire service chain.

Root causes of redundancy. Typically, the intrinsic cause
of processing redundancy is the trade-off between modularity
and performance. NFs as the components of a service chain,
are often developed independently, and naturally not optimized
for performance when being used in a variety of different
service chains. Without cross-NF optimizations, simultaneously
eliminating R1-R4 is not feasible. Of course, one can propose
developing a highly customized and optimized “Hyper NF” that
contains all the functionality and is equivalent to each service
chain. However, this method is ad hoc and not generalizable. As
service chains become more crucial and complex for modern
applications and networked systems [24], [37], [35], we seek
a framework that achieves cross-NF optimization without
sacrificing the modularity of each NF.

Cross-NF runtime consolidation can build a fast path to
eliminate redundancy. An NF usually has the same actions
on packets from the same flow unless an event that changes
NF behavior occurs (which we believe is infrequent). We
can leverage this domain-specific insight and build a fast
data path for service chain processing: once the initial packet
of a flow traverses the service chain, we collect the actions
of each NF and apply a consolidated action for subsequent
packets directly. For NFs that can have events that change
their behavior mid-stream for a flow, (i.e., making the data
path mutable in accordance with state changes), we also need
a mechanism to inspect state changes and trigger subsequent
packet action changes. Together, the cross-NF consolidation
naturally eliminates R/-R3: (1) the system only needs to parse
and classify the packet once; (2) the system can drop a packet
early when it arrives at the chain, because the system knows
after the initial packet that subsequent packets from the same
flow could be dropped by downstream NFs; (3) the system
can avoid overwriting packet fields, since it merges multiple
actions into one. Further, the consolidation also mitigates the
overhead of R4 by reducing cross-NF communication.

B. Limitations of Existing Approaches

Different approaches for similar scenario. As already
mentioned in §I, there are two sets of existing approaches
that try to optimize NFV performance. One set of them aim at
directly accelerating the data path, using specialized hardware
[25], [41], [21], shared memory [19], [27] and abandoning VM
isolation [30]. Another set of them aim at widening the data
path, leveraging dependency context between NFs to exploit
potential parallelism. Nevertheless, all of them still assume
the boundary of processing between NFs should be preserved,
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which is not critical for scenarios that require extremely low
latency. Different from these approaches, SpeedyBox enables
cross-NF optimization by consolidating the processing of
different NFs at runtime.

Similar approach for different scenarios. A similar insight
that subsequent packets can be cheaply matched is also
proposed in Open vSwitch (OVS) as it uses a Megaflow cache
to consolidate forwarding rules [31]. However, the stateless
forwarding nature and the intrinsically stateless design of OVS
(compared with diverse NFs) makes this approach difficult to
be applied directly in the NFV context. We summarize two
fundamental limitations:

o Stateless forwarding model. OVS is stateless because its
forwarding model is primarily based on OpenFlow [28].
The Megaflow cache assumes that packets from the same
flow (i.e., same five tuple) can be forwarded in the same
way. This is clearly not applicable for many stateful NFs
[45] who decide their behaviors based on packet payload
and internal state. For example, a Maglev Load Balancer
[13] (discussed in §VI) that maintains per-flow state may
update its forwarding behavior (e.g., change destination IP
and port) at runtime if a backend server fails. Achieving this
functionality in OVS is difficult.

o Poor expressiveness for complex NF semantics. OVS has poor
expressiveness to support NFs that require complex compu-
tation. Many modern NFs require payload parsing/inspection
or advanced functions to maintain internal state. For example,
the Snort IDS requires regular matching to inspect packet
payload [9], which is not supported in standard OVS.

The above limitations are hard to handle until the rise of NFV
as a new solution in data path. Contrary to existing approaches,
NFV opens the door to achieving complex state manipulation
and computation directly in the data path. SpeedyBox leverages
this new opportunity.

C. Addressing Design Challenges

o Challenge 1: How to collect the runtime behavior of diverse
NFs at minimum cost? (§1V)

NFs are often developed by multi-vendors with various
behavior. Consolidating their actions requires a common
processing abstraction to describe them in an uniform way. We
analyze some widely-deployed NFs in enterprise networks, and
partition NF processing into (1) header actions that transform
the packet header and (2) state functions that perform payload
inspection or updating NF internal states. For each NF, we
use an extended Match-Action Table (MAT) called Local
MAT to record per-flow header actions and state functions.
We standardize five types of header actions that cover most
transformations on packet headers. To have uniform state
functions, we collect the function handlers and invoke them at
runtime to describe stateful behaviors. (§IV-A)

We design a set of NF instrumentation APIs following the
proposed NF abstraction. Since the abstraction has paved a
way for dissecting NF processing, our APIs are easy to use
and can cover a body of commonly used NFs. The APIs
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Fig. 1. SpeedyBox architecture.

only collect the behavior of NF codes and do not change the
original processing logic, and the performance overhead can
be neglected according to our measurement. The modification
is also lightweight with negligible cost, e.g., our modification
on Snort IDS [34] only adds up to 27 lines of code. (§IV-B)

o Challenge 2: How to express the stateful behavior of a
service chain on a new consolidated path? (§V)

Different from static switch rules, many modern NFs are
stateful [15], [16], [40] — packet processing updates states
and states decide packet data path. When consolidating these
stateful NFs, we need to express the equivalent behaviors on
the new data path. If packets traverse the original data path
and trigger state updates, the new path must have its state
updated in the same way. More importantly, if a state reaches
certain conditions and causes future packet processing logic to
be changed (we define it as an event), the new path must be
updated to the new processing logic immediately. We carefully
design the Global MAT, that enables a novel execution model
for state functions (packet processing updates states), and also
contains an Event Table to check the conditions for triggering
an event (states decide packet processing). If a condition of
an event is satisfied, the actions on packets and state would
be modified accordingly. Thus, SpeedyBox is able to express
stateful behaviors of a service chain. (§V)

III. DESIGN OVERVIEW

SpeedyBox aims at building a fast data path for flows in
service chains with the logic of the original NF service chain
retained. For each flow, we define the initial packet as the first
packet after a connection is established (e.g., after the 3-way
TCP handshake). As the initial packet traverses a service chain,
SpeedyBox collects how each NF in the chain operates on the
packet and updates NF internal state, with an extend Local
Match-Action Table (MAT). Each NF is associated with a Local
MAT. SpeedyBox then aggregates all the actions/functions and
consolidates them to form a new, logically-equivalent data path
in a Global MAT. For subsequent packets of the same flow, they
are directed to the new path for faster execution. However, some
NFs may change their flow actions during runtime, e.g., when
certain internal states reach certain conditions or thresholds.
To this end, SpeedyBox proposes an Event Table to trigger
events in a timely manner to update the behaviors of NFs.

Figure 1 shows the architecture of SpeedyBox, and also
illustrates the workflow with an example of packet walkthrough.
Once a packet arrives, the Packet Classifier first generates its
FID by hashing the 5-tuple. The FID will remain consistent
throughout the service chain (even if the 5-tuple is modified).
Next, the Packet Classifier directs initial and subsequent packets
to two different paths:

« For an initial packet, the Classifier sends it to the first NF
of the original service chain. As the packet traverses each
NF, the associated Local MAT records the processing rule
of the flow, containing header actions and state functions .
Additionally, NFs also register events that can update NF
processing rules. The events can be triggered using the
FID of the packet to match the pre-defined events in the
Event Table at runtime. As soon as the service chain finishes
processing the packet, SpeedyBox notifies the Global MAT
to consolidate the rules for the FID from all Local MATs. In
this example, N I receives a packet with FID=1, and set the
header action as modify (DPort), which means modifying
the destination port of packets with FID=1. Similarly, N F5
set the header action of FID=1 as modify (DIP) that
modifies the destination IP, and also specifies the state
function (StateFunc) for packets from FID=1 according
to its own processing rules (e.g., inspecting packet payload,
incrementing flow counters, etc).

For a subsequent packet, the Classifier sends it to the Global
MAT. The Event Table first checks if an associated event
has been triggered (state.matchCondition: a general
callback handler that can be implemented with user-defined
functions). If not, the Global MAT directly applies the cached
consolidated header action (modify (DIP,DPort)) on the
packet, and also executes the state functions by invoking the
function handlers (StateFunc) as recorded by previous
packets. If the conditions of an event are satisfied (e.g., a
counter exceeds certain threshold), SpeedyBox updates the
header actions or state functions of the associated flows (e.g.,
Maglev changes the destination IP of a flow [13]), so that
subsequent packets can have updated processing rules.

IV. LocAL MAT

The Local MAT is responsible for recording NF actions or
functions on packets and state. We first propose an unified
NF processing abstraction based on our analysis of NFs in
enterprise networks (§IV-A), and then discuss how to build the
Local MAT with SpeedyBox’s APIs (§IV-B).

A. NF Processing Abstraction

Since NFs can be diverse and complex, to effectively
consolidate their actions, we propose a uniform abstraction for
typical NFs. We examine and analyze the processing logic of
several representative NFs in enterprise networks [35], such
as Gateways (for conferencing/media/voice), Firewalls, VPN,
Load Balancers, NATs and IDSs. According to the survey in
[35], these NFs are widely deployed, constituting about 82.7%
of the total number of deployed middleboxes. We discuss the
scope of our approach in §IV-A3.
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Overall, we observe that NF processing can be partitioned
into two parts: (1) Header Action: transformation of the packet
header or packet drop (for basic routing), and (2) State Function:
operations on NF internal state and inspection of packet
payloads (for advanced middlebox functioning).

1) Header Action: A header action denotes how an NF
operates on the packet header or if it drops the packet. Based
on the observations of the examined NFs and related work [30],
[14], we define five standardized header actions for NFs:
(1) Forward: NFs like Network Monitors only parse the
packet for internal state update, and then forward it without
modification; (2) Drop: NFs (e.g., Firewalls) may drop the
packet, and set the associated packet descriptor to nil in our
implementation; (3) Modify: NFs may modify the header
fields to achieve basic routing. Examples include Gateways,
Load Balancers and NATS; (4) Encap and Decap: Some NFs
may add/remove headers for/from a packet. For instance, VPNs
add an Authentication Header (AH) for each packet before
forwarding (encap), and remove the AH when the other end
receives the packet (decap) [42].

2) State Function: A state function denotes an advanced
function that an NF invokes to update internal state or inspect
the packet payload. Flows traversing an NF may be assigned
different state functions, since they can be assigned to different
conditional branches in the NF’s code logic. Note that payload
inspection is also cast as a state function, because the results of
the inspection also results in state update in the NFs examined
(e.g., in Snort, the inspection function will set the flags of
malicious flows). Based on how state functions interact with
payloads, we set three types for state functions: (1) read the
payload (READ), (2) write the payload (WRITE) and (3) do
not read or modify payload (IGNORE).

State functions are usually wrapped as callback functions
in an NF’s code, e.g., deep packet inspection in Snort IDSs
[34] and per-flow packet counting in network monitors. Some
NF programs may not wrap their logic in the form of callback
functions, which will take more effort for us to carefully
modify them. Fortunately, we find that popular NFs like Snort
incorporate their main functionality in properly-decoupled
callback functions, making it easy to integrate them into
SpeedyBox (§VI-C). We use the handler of a callback function
to represent the state function and store it in the Local MAT.
During NF runtime, SpeedyBox executes the state function by
invoking the associated handler.

Some state may be shared by a collection of flows [15],
[36], and multiple flows may share a state function. In this
case, we record the state function for all associated flows. In
implementation, we carefully design the processing concurrency
and avoid runtime conflicts or incorrect logic (§VI-A).

3) Applicable Scope for SpeedyBox: While we recognize
that it would be ideal for SpeedyBox to support any general
NF (and chain), NFs whose functionality largely relies on
buffering a sequence of packets and operating on them are
intrinsically not well-suited for our framework. Examples of
such functions include caches and WAN optimizers [16], [35],
which require executing a loop waiting for packets. The NFs
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// Extract FID from the packet
int nf_extract_fid(packet_descriptorx)

// Add header action for the flow
void localmat_add_HA (int FID, HA header_action,
args+* arg_list)

// Add the handler as a state function

// function type: (PAYLOAD) WRITE/READ/IGNORE

void localmat_add_SF (int FID, function_handlerx,
int function_type, argsx arg_list)

// Register event with update action or function

void register_event (int FID, condition_handlersx,
args* arg_list, HA update_action,
update_function_handlerx)

Fig. 2. SpeedyBox APIs for network functions to build their Local MATs.

would then perform operations on the aggregate of packets
buffered. For these NFs, the performance bottleneck likely is in
having to wait for the batch of packets to arrive rather than the
packet processing overhead. SpeedyBox’s gains are particularly
significant with NFs that perform per-packet processing using
a Match-Action primitive (i.e., act on receiving each packet),
such as a Firewall, Load-Balancer or NAT. SpeedyBox would
be applicable to a large fraction of functions typically used
in an enterprise network [35], with 82.7% NFs falling into
this category. The rest of these NFs, while also able to be
incorporated in SpeedyBox’s framework, are actually inefficient
with runtime consolidation.

B. Building the Local MAT with Easy-to-Use APIs

The NF processing abstraction enlightens us to design easy-
to-use APIs for NFs to build their Local MATs. Note that our
goal is to minimize the modification to NF code, or at least not
change the major processing logic. Specifically, SpeedyBox
provides several interfaces to help programmers to specify
NF header actions, state functions and events respectively, as
shown in Figure 2. When adding header actions, we provide a
set of standardized header actions, with additional arguments,
such as which header field to modify. When adding a state
function, we provide the handler of the state functions along
with function arguments, and also the associated function type
(payload read/write/ignore) (§1V-A2). For registering an event,
we provide a condition_handler that checks whether
certain conditions in the NF are matched. We also need to
provide the action/function for updates.

At NF runtime, the Local MAT adds header actions and state
functions for each flow in sequence. Maintaining the order
of state functions is crucial to guarantee logic equivalence,
otherwise code dependencies may be violated. We use a queue
data structure to maintain the sequence in our implementation.

V. GLOBAL MAT

A. Guidelines for Consolidation

We first present two important observations on NF behaviors,
which are crucial guidelines for the consolidation.
o Observation 1: In most cases, per-flow header actions and
state functions is deterministic by the initial packet.
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For instance, we manually inspect the source code of Snort
[9] and observe that Snort assigns a rule matching function for
each flow as initial packet arrives. For subsequent packets, the
same function is invoked repeatedly. This is also true for other
Layer-3 NFs, such as Load Balancers, NATs and Firewalls.
For example, once a NAT allocates a header action with a new
destination IP and port for a new flow, the same header action
applies to all subsequent packets in the same flow.

o Observation 2: In other cases, some NFs can trigger “events”
that update their header actions or state functions during
runtime. Specifically, an event is triggered when some
internal state is updated to a certain condition.

This point addresses the corner cases of the first observation,
and is crucial for some NFs. For example, the Google Maglev
load balancer [13] can reroute an established flow to a new
backend server (with IP as new_1ip) using consistent hashing,
if the original backend server (with IP as origin_ip) fails.
Suppose the original Maglev header action for a flow is
modify (DIP, origin_ip). After the rerouting, the header
action needs to be updated as modify (DIP, new_ip). This
runtime action update during is called an event in SpeedyBox.
Based on our observations of existing NFs, an event is triggered
only when some internal state is updated. For common NFs,
events do not occur frequently, but are crucial parts of NF
stateful logic.

Overall, Observation #1 implies that the consolidated result
can be reused and do not change in most cases, unless otherwise
notified (by an event). Observation #2 addresses that we should
first check if an event has been triggered, and then decide
whether the consolidated result can be reused.

B. Consolidating Header Action

There are five heterogeneous header actions (§IV-Al) in-
cluding modify, encap, decap, forward and drop. This
heterogeneity imposes difficulties for consolidation. We seek
to synthesize the header actions aggregated from NFs with an
algorithm. The input of the algorithm is a list of header actions,
and the expected output should be a consolidated header action.
We omit the forward action in the following because we
set it as the default action if no other action is provided. As
SpeedyBox goes through the action list, we discuss how it
consolidates different actions:

« Drop: As long as the list contains at least one drop action,
the final action should be drop. In this case, we set the
packet descriptor to null and release the packet memory.

« Encap/Decap: We use a stack to simulate the header
encapsulation and decapsulation process. Encapsulation is
pushing a new header to the (packet) stack, and decapsulation
is popping a existing header from the stack. If two adjacent
encap and decap actions operate on the same header, we
eliminate them simultaneously.

e Modify: If two modify actions change the same field
but with different values, we select the value of the latter
modify. If they operates on different header fields, we
consolidate the two modi fy actions into one using bit oper-
ations. Assume Fy is the original packet, and denote P;, P»
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as the output of modifyl and modify2, respectively. Suppose

modifyl and modify2 touch different fields, the output packet

can be expressed as Py @[(Po @ P1)|(Po @ P-)]. The P

operator means XOR. We iterate the process incrementally

and obtain the output.

In addition to IP and Port fields, we may also need to modify
the remaining fields of packets, such as checksum, TTL, MAC
address and packet length. Since these fields are unlikely to
be part of the main processing logic of NFs according to
our observations, we modify these fields at the end of the
consolidation, ensuring that SpeedyBox outputs valid packets.

C. Consolidating State Function

Consolidating state functions requires executing the functions
aggregated from different Local MATs. The key challenge here
is maintaining the stateful logic of the original chain in the
new data path. We first describe how we we execute the state
functions (§V-C1), and then introduce how we optimize the
execution with parallelism (§V-C2).

1) Executing State Function with the Event Table:
SpeedyBox executes state functions in the order that they
are added to the Local MATS, so that the NF processing logic
is retained. We define all state functions of a rule as a state
Sfunction batch, and all state functions in a batch should be
executed in sequence. When executing state function batches,
SpeedyBox triggers events when conditions are matched. Based
on Observation #2 (§V-A), the Global MAT checks whether
certain conditions are matched as soon as the associated states
have been updated. This motivates us to design the Event Table.

The Event Table supports triggering NF-registered events and
enables updating NF actions/functions at runtime. SpeedyBox
lets NFs specify under what conditions an event should be
triggered and also the associateed update action/function,
leveraging the register_event interface provided by
SpeedyBox exposed APIs (Figure 2). When registering an
event, a condition_handler is needed that specifies how
to check whether an event is triggered and what the exact
condition is. In addition, we also need to provide the associated
header action/state function handler for updates.

Figure 3 demonstrates the workflow of the Event Table using
an example of a DOS Prevention NF for illustration. The DOS
Prevention NF detects a DOS attack by monitoring the number
of TCP_SYN flag on a per-flow basis. The top left table is the
original global MAT before consolation, and the bottom right
table is its consolidated global MAT. If the number of SYN
flags seen exceeds a threshold (f1lowl_cnt>100), the Event
Table (bottom left) triggers an event to replace the modify
action with a drop action (top middle), and a new consolidated
global MAT is computed (top right).

2) Optimization: Combining State Function Execution
with Parallelism: To further reduce the latency, we incor-
porate parallel execution [47], [38] into SpeedyBox with our
customizations. While the state functions in a batch should
be executed sequentially to guarantee the equivalence of NF
internal logic, we find that some state function batches across
NFs can be executed in parallel. We analyze the dependency
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Fig. 3. State function execution with the Event Table to express stateful behaviors.

TABLE 1. DEPENDENCY ANALYSIS OF STATE FUNCTION PARALLELISM.
FOR CHAIN NFy; — NF>, SF_batchy AND SF_batcho ARE THE STATE
FUNCTION BATCH OF N F; AND N F>, RESPECTIVELY.

SFE_batchy | Payload | Payload | Payload
SF_batchy Write Read Ignore
Payload Write N N Y
Payload Read Y Y Y
Payload Ignore Y Y Y

(Y: parallelizable, N: not parallelizable)

between two batches in Table I. The way that batch; affects the
processing of batchs comes from packet payload dependency.
Note that in our problem space, there is no packet header
dependency because such dependency is already eliminated
by the Global MAT, which aggregates the header actions
belonging to the same flow. Each state function has different
actions on the payload: write/read/ignore (§IV-A2). Since each
batch contains multiple state functions, we determine the
action property of an entire batch as: the action of the state
function that has the highest priority in the batch (priority:
WRITE>READ>IGNORE). For example, a batch with {read,
read, write} is determined as write. If batch, and batchs both
read the payload, we can pass the packet payload descriptor to
them simultaneously, enabling parallel execution. However, if
batchy writes the payload, they cannot be parallelized unless
batchy ignores the payload.

VI. IMPLEMENTATION
A. Execution Environment

We have implemented our SpeedyBox prototype on top
of BESS [2] and OpenNetVM [46]. Both of them are well-
known NFV platforms and are already leveraged by some
academic researches [29], [47], [38], [23]. We briefly introduce
our customizations on these two platforms.

BESS: BESS ([17]) typically implements an entire service
chain as a single process on a dedicated core . We implement
the Global MAT as a global array that can be accessed by
all Local MATs. We develop the packet classifier using the
Task class, the Global MAT executor as a new BESS module,
and construct a service graph with two branches: one branch
for initial packets that traverse the original service chain, and
the other for subsequent packets that traverse the Global MAT.
The entire customization adds about 1900 LOC to BESS.

OpenNetVM: OpenNetVM [46] runs each NF on one
dedicated core, and interconnects NFs leveraging RX/TX
queues that deliver shared memory packet descriptors. We
develop the Global MAT at the NF Manager, and the packet
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TABLE II. NFS IMPLEMENTED FOR EVALUATION AND ADDITIONAL LOC
TO INTEGRATE THEM INTO SPEEDYBOX.

LOC for Core

Network Function . - Added LOC
Functionalities
Snort 1129 27 (+2.4%)
Maglev 141 23 (+16.3%)
IPFilter 110 20 (+18.2%)
Monitor 223 19 (+8.5%)
MazuNAT 358 20 (+5.6%)

classifier at the Manager’s RX queue thread. The consolidation
of Local MATs rules involves inter-core communication. We
leverage the existing inter-core message queues (implemented
as ring buffers in OpenNetVM) to achieve this. Our extensions
to OpenNetVM have around 2800 LOC.

B. Packet Classifier

FID Consistency: To guarantee FID consistency across
Local MATs, the Packet Classifier hashes the five tuple of
a packet header to a 20 bits FID, and attaches it directly to the
packet as a meta-data. This 20 bits sequence can represent more
than 1 million concurrent flows (enough for our evaluations).
We can extend the FID length to accommodate more flows.
Once assigned, the meta-data remains consistent along the
service chain in the data path, so that every NF in the chain
can use a consistent FID. Since both BESS and OpenNetVM
deliver packets across service chains with lightweight packet
descriptors, our approach does not incur high packet copying
overhead. When the packet leaves the service chain, SpeedyBox
detaches the meta-data from the packet.

Tracking Flow State: In order to clean up stale rules for
flows whose connections have been closed, the Packet Classifier
also monitors the TCP_FIN and TCP_RST flag. Once the final
packet of a flow (with FIN or RST flag) arrives, we delete the
corresponding rule from the Global MAT and all Local MATs
and free the associated memory space.

C. Network Functions

We implement five popular network functions and integrate
them into SpeedyBox with our APIs, and the additional lines
of code (LOC) for core functionalities is shown in Table II.

Snort [34] is an IDS that inspects traffic against the rule
lists to classify the packets. We derive the source code of
Snort from [9] and migrate it to our system. We first modify
the libpcap-based Snort into DPDK-compatible, and then cast
the handlers of the packet inspection functions as the state
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functions. And since Snort does not modify packets, we set
Snort with forward as the header action.

Maglev [13] is Google’s software Load Balancer for net-
working. A Maglev NF distributes flows to their destinations
like normal Load Balancer, while also tolerates network faults
(e.g., a destination machine fails unexpectedly) leveraging
consistent hashing and connection tracking. Since Maglev is not
open-sourced, we implement our Maglev NF logic by closely
following the consistent hashing algorithm presented in Section
3.4 of Maglev’s paper [13]. We set per-flow events for Maglev
as updating the destination IP for existing flows when failure
occurs, and emulate unpredictable failure events by setting the
condition handlers with random trigger functions.

IPFilter [3] is a Firewall prototype that parses flow headers
and checks against a header blacklist with linear scanning. For
flows that match the blacklist, we set them with drop actions,
or otherwise with forward actions.

Monitor is a network monitor that is commonly used in
academia [30], [38], [35]. It maintains packet counters for each
each flows, and sets each flow with a forward action and a
state function to maintain the associated counter.

MazuNAT [6] closely resembles the NAT module in Click
[22] that translates the IP and port for flows. We omit irrelevant
functionalities in [6] such as ICMP packets handling. MazuNAT
sets each flow with a modify action.

VII. EVALUATION

Our evaluation is performed on a testbed system having an
Intel Xeon E5-2660 v4 CPU (2.00GHz) containing 14 physical
cores, with 32GB of RAM and an Intel Corporation 82599ES
10-Gigabit NIC. The OS runs Linux kernel 4.4.0-31. To test the
performance, we deploy a DPDK-based Packet Generator [4]
on another server (also equipped with a 10G NIC) and directly
connect it to the testbed. In the following figures and tables,
SBox denotes SpeedyBox, and ONVM denotes OpenNetVM.

A. Performance Microbenchmarking

We created several micro-benchmarks to evaluate the basic
performance of two optimizations in SpeedyBox. Specifically,
we evaluate how header action consolidation and state function
parallelism improve service chain performance. All experiments
in this section are performed using 64B packets.

o
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> @, |[O-BESSwSBox| /,é,,,,,
508 <% j-o-onwm
= g |-O-- ONVM w/ SBox
Q
§ 0.6 § 3
2o4 22
a —O—BESS \? a
8 --0O--BESS w/ SBox §
20291-0-ONVM [ 21
--O-- ONVM w/ SBox|
0.0 0

] 3 3 i 2 3

# State Function # State Function
(a) Processing Rate
Fig. 5.

(b) Processing Latency
Effect of state function parallelism.

1) How does header action consolidation improve perfor-
mance: We vary the number of header actions to evaluate how
consolidating them saves CPU cycles for processing. We use a
chain with 1-3 IPFilter NFs. The results are representative, and
comparable with other NFs, so we only provide IPFilter results
here, while the evaluation results of other NFs are in [7].

Figure 4(a) and 4(b) show the results with BESS and
OpenNetVM respectively. For comparisons, we plot the CPU
processing cycles of the chain w/ and w/o SpeedyBox for
initial and subsequent packets. The results are similar on both
frameworks. Thus we focus on BESS for analysis. As shown
in Figure 4(a), for both chains w/ and w/o SpeedyBox, the
initial packet needs to spend much more processing cycles
than subsequent packets due to the initialization processes (e.g.,
linear matching of ACL lists for new flows). For subsequent
packets, when there is only one header action, SpeedyBox
costs more processing cycles than the original chain because of
the extra overhead for recording the processing rules into the
Local MAT; when the number of header actions increases to
2 and 3, consolidation reduces 40.9% and 57.7% CPU cycles
than original chain. Theoretically, this reduction can be as high
as % for NV header actions.

As a special case, we next demonstrate that consolidating
header action can enable early packet drops, thus reducing CPU
cycles. We use a chain with three IPFilters (NF1, NF2, NF3)
and set the corresponding actions as {forward, forward,
drop} for all flows, respectively. Originally packets in a flow
need to traverse the entire chain and are dropped at NF3.
With SpeedyBox, however, subsequent packets can be dropped
early when they arrive at the chain because of header action
consolidation. Table III shows that SpeedyBox enables early
packet drop and saves ~65% CPU cycles.

2) How does state function parallelism improve perfor-
mance: Parallelizing state functions can increase processing
rate and reduce overall execution latency. We use a chain
of 1-3 identical synthetic NFs for evaluation. The synthetic
NF has no header action, and has one state function that is

TABLE III. EARLY PACKET DROP SAVES CPU CYCLES.

(CPU cycle) NF1 | NF2 | NF3 Aggregate
BESS 530 | 582 | 577 1689
BESS w/ SBox — — — | 591 (-65.0%)
ONVM 510 | 570 | 540 1620

ONVM w/ SBox | — — — | 570 (-64.8%)
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equivalent to the Snort packet inspection (does not modify
payload). According to the analysis in Table I, two of these
state functions can be parallelized. We then vary the number
of the synthetic NFs (# of state function) in the chain and
measure the processing rate and per-packet latency.

Figure 5(a) shows the processing rate results. For BESS, the
processing rate of the original chain decreases as number of
state function increases. Nevertheless, SpeedyBox prevents the
processing rate from decreasing a lot by carving out a new
parallel data path. For instance, compared to the original BESS
(sequential), BESS with SpeedyBox achieves 2.1x processing
rate. For OpenNetVM, however, the processing rate stays
relatively stable. This is because the original OpenNetVM
uses pipelined processing and will not sacrifice processing rate
when the number of state functions increases.

Figure 5(b) shows the latency benefits of SpeedyBox. For
example, SpeedyBox reduces the latency by 59% for BESS
when there are three state functions. Suppose we have N
identical state functions, the optimal latency reduction can be
%. Note that when there is only one state function, there
exists a little performance degradation due to extra overhead
caused by collecting NF behaviors.

B. Service Chain Performance

1) How does each optimization contribute to the overall
performance improvement: Next, we show how the header
action consolidation and state function parallelism contribute
to the overall improvement by using a chain with a Snort NF
followed by a Monitor. Both of them have header actions and
state functions, and thus will benefit from the two optimizations
simultaneously. Figure 6 shows the CPU cycle reduction
and processing rate improvement of the Snort+Monitor chain.
SpeedyBox reduces CPU cycles of per packet processing by
46.3% and 47.4% for BESS and OpenNetVM, respectively. The
reduction is due to the header action consolidation. Moreover,
SpeedyBox improves the processing rate of BESS by 32.1%
by incorporating parallelism. Note that SpeedyBox does not
improve the processing rate of OpenNetVM. This is because
the original OpenNetVM already uses pipelined processing, and
the processing rate will not drop significantly when chaining
two NFs. This observation is identical with the results provided
in OpenNetVM'’s paper (Figure 2 in [46]).

Next, Figure 7 analyzes how SpeedyBox reduces the pro-
cessing latency and how much each optimization contributes
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to the reduction. For BESS, the overall processing latency
is reduced by 35.9%; of this reduction, we measure that
49.4% 1is contributed by header action consolidation while
the remaining 50.6% by state function parallelism. The result
on OpenNetVM is similar, except that parallelism makes up
a larger portion (58.9%) than that in BESS. This is due to
the inter-core communication overhead in OpenNetVM, which
introduces extra CPU cycles and partially reduces the benefit
of header action consolidation.

2) Can SpeedyBox support long chains: Next, we demon-
strate how SpeedyBox supports long chains without violating
performance. We use a chain with 1-9 IPFilters. The ACL rules
of the IPFilters are carefully modified to avoid packet drops.
Note that in OpenNetVM, we can only support a maximum
chain length of 5, limited by the number of cores on our
testbed; for BESS, there is no such limit as all NFs are part
of one process. The processing rate and latency results are
shown in Figure 8. The latency performance of SpeedyBox is
nearly irrelevant to the chain length, indicating that SpeedyBox
can significantly reduce the latency for long chains thanks
to cross-NF consolidation. Besides, SpeedyBox can maintain
high processing rate for BESS when running long chains. And
again, SpeedyBox does not improve the processing rate of
OpenNetVM, since the original OpenNetVM adopts a pipelined
model that already ensures high processing rate regardless of
the chain length [19], [46].

3) How does SpeedyBox perform in real-world service
chains: Finally, to understand how SpeedyBox performs under
real world setups, we derive two service chains from [24], [26]
with some customization: we replace the general notion of
“IDS” in [26] with our Snort IDS. Similarly, we also replace
“NAT” with MazuNAT, “Load Balancer” with Maglev, and
“Firewall” with IPFilter.. We measure the flow processing time
as the aggregated time spent processing all packets in a flow,
demonstrated in Figure 9. We use the popular datacenter trace
as the input traffic [11]. Since the payloads in the trace are
null for anonymization, we synthesize the testing traffic with
customized payloads according to the inspection rules in Snort.

Chain 1: MazuNAT+Maglev+Monitor+IPFilter. This
chain is identical with the example in Motivation (§IT). We do
not set events for Maglev in this experiment. SpeedyBox can
consolidate the header actions of all four NFs in the chain. The
processing time of all flows in the trace is shown in Figure
9(a). For BESS, SpeedyBox reduces the flow processing time
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at 50" percentile by 39.6%. For OpenNetVM, the reduction
of flow processing time at 50" percentile is 40.2%.

Chain 2: IPFilter+Snort+Monitor. Figure 9(b) shows the
results. SpeedyBox parallelizes the state function execution of
Snort and Monitor, and consolidates the header actions of all
three NFs. For BESS, SpeedyBox reduces the flow processing
time at 50" percentile by 41.3%. For OpenNetVM, SpeedyBox
reduces the flow processing time at 50" percentile by 34.2%.
The results demonstrate that SpeedyBox can significantly
reduce the processing latency under real world workload.

C. Empirical Tests on Equivalence

SpeedyBox is designed by strictly retaining the logic
equivalence of the original NF and service chain. To test
the equivalence, we sample and test some chains. Generally,
the methodology is to inject various packets into the system
to cover different conditional branches in the code. If the
system generates identical packet outputs and state, we are
confident that SpeedyBox guarantees equivalence. We show
three representative case studies:

1) Testing Snort (different conditional branches): We
inject three sets of flows containing suspicious payloads that
match all the three types of inspection rules (Pass/Alert/Log)
of Snort to cover the conditional branches sufficiently. We
examine and find the log outputs are identical.

2) Testing Maglev (containing events): We inject a flow
with 10 packets into Maglev, and set the associated event
condition as “change the destination IP from ip; to ips, from
the sixth packet”. Denote the sequence of the 10 packets as
pktl, pkt2, ... and pkt10. We check the packet outputs and
find the destination IP of pkt1-pkt5 is ip;, and the destination
IP of pkt6-pkt10 is ips. The remaining headers and packet
payloads going to ips are verified to be true. Thus, the event
has been triggered correctly.

3) Testing real world chains (comprehensive test): We also
test the equivalence of SpeedyBox in real world service chains
in §VII-B3. In the first chain’s Maglev NF, we set events
for 20% flows during mid-stream. We find that there is no
difference between the packet output for both chains. Further,
we compare the per-flow counters of the Monitor and the log
outputs of Snort. Results show that the value of all counters and
the Snort logs are all identical with and without SpeedyBox.
And the events of Maglev have been triggered correctly for all
associated flows.

Our empirical tests show that NFs consolidated in SpeedyBox
have equivalent logic with the original NFs and chains.
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VIII. OTHER RELATED WORK

Consolidation in NFV: To our best knowledge, CoMb [35]
is the first to introduce the notion of consolidation into NFV
literature. However, CoMb focus on consolidating network
functions on single physical machine to enable better resource
management. We inherit the scenario that multiple NFs are
densely packed on one machine, but we focus on reducing the
processing redundancy in service chains.

Redundancy elimination. OpenBox [12] proposes to elim-
inate redundant logic across NFs, by dissecting NF into basic
elements, reorganizing the element graph and identifying the
redundant operations. However, OpenBox does not enable
packet early drops and parallel execution. SpeedyBox enables
these two optimizations through consolidation. SNF [20]
also proposes redundancy elimination in NFV by synthesizing
the service chains, while the authors do not mention how to
implement complex NFs such as Snort in SNF’s framework.
SpeedyBox provides flexible framework for state management
and also enables state functions parallel execution.

Optimizations in software switches: VFP [14] extends
OVS’s idea by introducing a transposition engine that records
actions of the first packet and apply the transposition directly to
subsequent packets, similar to OVS’s methodology. However,
existing solutions of OVS and VFP are not applicable in NFV,
since NFs are too diverse to consolidate and some NFs may
require runtime logic update that makes the data path mutable.
SpeedyBox overcomes the two challenges with stateful MATSs
and the Event Table.

IX. CONCLUSION

There are substantial processing redundancies across NFs in
a service chain because NFs are typically developed indepen-
dently. In this paper, we propose SpeedyBox, a low latency
NFV framework to eliminate the redundancy by consolidating
functionality in service chains, without sacrificing modulariza-
tion. Evaluation shows that SpeedyBox can significantly reduce
processing latency in real world service chains.
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