
SpeedyBox: Low-Latency NFV Service Chains with Cross-NF Runtime Consolidation

Yimin Jiang§, Yong Cui§∗, Wenfei Wu§, Zhe Xu§,
Jiahan Gu§, K. K. Ramakrishnan†, Yongchao He§, Xuehai Qian‡

§Tsinghua University †University of California, Riverside ‡University of Southern California

jymthu@gmail.com, cuiyong@tsinghua.edu.cn, wenfeiwu@tsinghua.edu.cn, xdb009@gmail.com
gjh14@mails.tsinghua.edu.cn, kk@cs.ucr.edu, heyongchaoSSS@gmail.com, xuehai.qian@usc.edu

Abstract—Software-based service chains in Network Function
Virtualization (NFV) typically suffers high processing latency.
This latency grows as chain lengths increase and possibly violates
application requirements. Previous efforts focus on reducing
latency while maintaining the perspective of each NF being an
independent, isolated module. This results in processing redun-
dancy that could eventually become the performance bottleneck.

In this paper, we propose a low-latency NFV framework
called SpeedyBox, that innovatively enables cross-NF runtime
optimizations in a service chain to eliminate processing redun-
dancy. SpeedyBox builds a fast data path for flows at runtime
by consolidating the aggregate actions across diverse network
functions (NFs) in a service chain. In SpeedyBox, each NF is
instrumented with a stateful Local Match-Action Table (MAT),
and leverages our easy-to-use APIs to record its per-flow behavior
in the Local MAT. Next, SpeedyBox uses a Global MAT to build
the fast data path by consolidating actions from each Local
MAT, while providing the ability to express the stateful NF
behaviors with an Event Table. We have implemented a prototype
of SpeedyBox on the BESS and OpenNetVM NFV platforms. Our
trace-driven evaluation on common NFs shows that SpeedyBox
achieves significant latency reduction under real world scenarios.

Keywords-NFV; low-latency; service chain; consolidation

I. INTRODUCTION

The recent trend in Network Function Virtualization (NFV)

is to implement data-plane focused network functions (NFs) in

software to achieve more elastic management and lower cost

for networked systems [37], [35], [33]. NFs are often connected

together to form a sequential service chain. The performance

requirement for NFV is becoming increasingly stringent (e.g.,

latency targets of 0.5ms for edge cloud processing [5], [8]).

However, software-based NFs (chain) suffer from high latency,

which in some cases can become unacceptable when packets

traverse a long chain (e.g., up to ten NFs) [19], [27], [23].

A common practice is to co-locate all (or most) NFs in a

chain on the same physical server, which reduces cross-server

communication overhead [24], [32], [38], [19], [27], [23], [46].

Based on this practice, several solutions have been proposed

to accelerate packet processing of NFs and service chains. We

summarize two sets of previous work: (1) A set of approaches

that focus on accelerating a section of the data path, including

the use of special hardware (FPGA [25] and GPU [21], [41]),

the use of software isolation (Netbricks [30]) to speed up the

performance of a single NF, and introducing shared memory

for packet delivery between NFs (NetVM [19]) to speed up

*Yong Cui is the corresponding author.

the service chains. (2) Another body of work proposes to

parallelize NFs execution to accelerate service chains (NFP

[38] and Parabox [47]), leveraging the fact that some NF pairs

do not have dependencies and can be executed in parallel.

Nevertheless, the above two broad NF (chain) processing

optimizations hold a common assumption: NFs are modular,

and the boundary between neighboring NFs in a chain still
remains. Specifically, systems that hold this assumption can

lead to redundant processing such as repeated parsing and

classification, dropping packets late in the service chain (e.g., a

packet that has been processed by an upstream NF is dropped

by the downstream NF), packet overwriting and redundant IO.

Thus, we argue that existing systems are far from optimal, and

there is an upper limit of how much the NF chains can be
sped up. Without a cross-NF optimization that consolidates

the processing actions of different NFs, these redundancy still

exist and could inevitably become the performance bottleneck

as chain lengths increase.

The question now becomes: how can we achieve cross-NF

optimization? We closely dissect and analyze the behaviors of

modern NFs in enterprise networks [35], and observe that the

per-flow behavior of an NF does not change unless an event that

changes the NF behavior occurs. We can leverage this domain-

specific insight to perform cross-NF optimizations. If there is

no event happening, we can consolidate the aggregated actions

across NFs as the initial packets of a flow traverse the chain,

and can directly apply the consolidated action on subsequent

packets, without having them traverse the original service chain

all over again. Moreover, we analyze the behaviors of modern

NFs and find that events do not happen frequently, which further

enhances the motivation. We call this optimization cross-NF
runtime consolidation in this paper. Our approach is orthogonal

and complementary to the previous approaches we mentioned.

While cross-NF runtime consolidation is an ideal vision for

improving the performance of service chains, realizing it in

practice does involve two major challenges:
• Challenge 1: How to collect the runtime behavior of different

NFs at minimum cost? NFs are usually heterogeneous from

each other, containing diverse logic and processing actions on

packets and internal states. To perform runtime consolidation,

the primary concern is how to understand and collect NF

behaviors. This requires (1) describing the behaviors of

diverse NFs with a uniform abstraction and (2) extracting

that behaviors at minimum cost.

• Challenge 2: How to express the stateful behavior of a

68

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00016

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

service chain on a new, consolidated path? Most modern

NFs are stateful [15], [16], [40] and so are the associated

chains. Building a new data path needs to ensure that the

state is properly handled. Furthermore, the packet output

should be identical to that of the original chain. Some

similar mechanisms in existing works such as [31], [35],

[12], [14] are not applicable to express the stateful and

complex behaviors in the context of NFV service chains.
To address the challenges, we propose a novel NFV frame-

work named SpeedyBox that innovatively leverages cross-NF
runtime consolidation to improve service chain performance.

Overall, SpeedyBox has three logical components: the Local
Match-Action Table (MAT), a Global MAT and an Event
Table. Each NF is associated with a Local MAT; as the

initial packet of each flow traverses the chain, each NF uses

SpeedyBox instrumentation APIs to record its processing

behavior, including actions on packet and NF state, and

populates a record in the Local MAT. Then, the Global MAT
aggregates and consolidates the actions from each Local MAT

to set up a fast data path; all subsequent packets of the flow

would directly go through this fast path with all processing

on the fast data path being optimized for faster execution.

During the processing, the Event Table constantly checks if

any condition is matched to trigger an associated event (e.g.,
updates to the routing configuration) that changes NF behaviors

at runtime, to guarantee the normal functionality of NFs.

SpeedyBox achieves high performance without causing

laborious overhead for the NF developers. We provide easy-

to-use APIs that minimize modifications on the code for an

NF. Since the APIs seek to only record NF behaviors, the

modifications do not change the original processing logic and

are lightweight. For example, our modification on the Snort

IDS [34] only adds up to 27 lines of code.

There are legitimate concerns regarding the isolation between

NFs [27]. Additionally, approaches such as OpenNetVM [46]

simplify deployment by having NFs in distinct containers so

that NFs may be independently developed. However, this is

an issue of tradeoffs - isolation, simplicity and flexibility in

deployment often come at the cost of performance. Where per-

formance is the dominant consideration, approaches such as [2],

[30], [17] operate at the other end of the spectrum, having all

the NFs integrated into a monolithic process. The approach in

this paper seeks to strike a balance, by accommodating inde-

pendent NFs in a service chain within containers. But by using

a small set simple APIs we provide, developers can support

SpeedyBox effectively. Network providers deploying NFV can

work with NF vendors to extract the processing actions and

enable consolidation across multiple NFs as we describe in

this paper. We argue that it is worthwhile to tradeoff the small
amount of programming overhead and deployment effort for
obtaining the high performance of the entire service chain.

SpeedyBox still seeks to support deployment of independently

developed NFs without necessarily having to consolidate them

in a single monolithic process.

This paper makes the following contributions:

• We design SpeedyBox, a novel low-latency NFV framework

that exploits cross-NF runtime consolidation to reduce the

processing redundancy in a service chain.

• We present a novel NF processing abstraction guided by the

behaviors of modern NFs, and then describe how we build

the Local MAT for each NF using SpeedyBox’s APIs that are

lightweight and easy-to-use. For example, our modification

on Snort IDS only adds 27 lines of code. (§IV)

• Based on our NF processing abstraction, we propose a Global

MAT that consolidates the processing actions from different

NFs, while retaining the stateful behaviors of NFs with the

Event Table. (§V)

• We have implemented the SpeedyBox prototype and five

common NFs on both the BESS [2] and OpenNetVM

platforms [46]. We have open-sourced our code [1]. (§VI)

• Our comprehensive evaluations show that SpeedyBox can

significantly reduce latency, while strictly retaining the

stateful behaviors of the original NFs. (§VII)

II. CONTEXT AND CHALLENGES

A. Background and Motivation

Low-latency NFV service chains are critical. There are

increasing number of applications that demand low end-to-end

latency, which put stringent requirement on the processing

delay of in-network NFs (and chains) [38]. For instance, the

per-packet processing time at the mobile edge cloud needs

to be less than 0.5ms [5], [8]. If the requirement is violated,

it can have a significantly negative impact on the quality of

experience and normal functioning of applications [10], [39].

Redundancy is pervasive in NFV processing. Despite

existing optimizations on NFV performance, we still observe

redundant processing when a packet flow is being processed by

a service chain. Consider a typical service chain derived from

[24]: NAT→Load Balancer→Monitor→Firewall. We analyze

four kinds of processing redundancy that this chain could incur:

• R1: Repeated parsing and classification. Each of the four

NFs in the chain needs to perform the same parsing and

classification steps on each packet, when ideally all we need

is one parsing and one classification step [12];

• R2: Late packet drop. Packets that go through the NAT, Load

Balancer and Monitor may then be dropped by the Firewall.

The redundant and wasted processing inevitably degrades

performance. Instead, it would be better to drop the packet

at the beginning of the service chain [43], [23];

• R3: Packet overwrite. A NAT may modify the destination

IP of the packet, but the downstream Load Balancer may

further modify the same field, thus overwriting that header

field. If we can merge the two modifications, processing and

latency can be further reduced [14];

• R4: Redundant IO caused by isolation. The performance

degradation in NFV brought about by isolation has been well

studied [43], [46], [44], [18]. Even in our focused scenario

where the entire service chain is put on a single machine,

there still exists VM-based [27], [19] or container-based

[23], [46], [18] isolation. This isolation inevitably incurs

redundant IO and cross-core communication. Note that we

69

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

are not arguing against the isolation, but instead, we argue

that a consolidated approach can mitigate such overhead by

reducing wasteful communication.

All of these redundancy can significantly add to the process-

ing latency. For example, according to our measurements (§VII),

overwriting the packet (R3) twice can increases the latency by

about 2x. Existing work only partially resolves these [12], [43],

[23], [14]. Overcoming all the redundancy simultaneously is

not possible unless we enable cross-NF optimizations across

the entire service chain.

Root causes of redundancy. Typically, the intrinsic cause

of processing redundancy is the trade-off between modularity
and performance. NFs as the components of a service chain,

are often developed independently, and naturally not optimized

for performance when being used in a variety of different

service chains. Without cross-NF optimizations, simultaneously

eliminating R1-R4 is not feasible. Of course, one can propose

developing a highly customized and optimized “Hyper NF” that

contains all the functionality and is equivalent to each service

chain. However, this method is ad hoc and not generalizable. As

service chains become more crucial and complex for modern

applications and networked systems [24], [37], [35], we seek

a framework that achieves cross-NF optimization without

sacrificing the modularity of each NF.

Cross-NF runtime consolidation can build a fast path to
eliminate redundancy. An NF usually has the same actions

on packets from the same flow unless an event that changes

NF behavior occurs (which we believe is infrequent). We

can leverage this domain-specific insight and build a fast

data path for service chain processing: once the initial packet

of a flow traverses the service chain, we collect the actions

of each NF and apply a consolidated action for subsequent

packets directly. For NFs that can have events that change

their behavior mid-stream for a flow, (i.e., making the data

path mutable in accordance with state changes), we also need

a mechanism to inspect state changes and trigger subsequent

packet action changes. Together, the cross-NF consolidation

naturally eliminates R1-R3: (1) the system only needs to parse

and classify the packet once; (2) the system can drop a packet

early when it arrives at the chain, because the system knows

after the initial packet that subsequent packets from the same

flow could be dropped by downstream NFs; (3) the system

can avoid overwriting packet fields, since it merges multiple

actions into one. Further, the consolidation also mitigates the

overhead of R4 by reducing cross-NF communication.

B. Limitations of Existing Approaches

Different approaches for similar scenario. As already

mentioned in §I, there are two sets of existing approaches

that try to optimize NFV performance. One set of them aim at

directly accelerating the data path, using specialized hardware

[25], [41], [21], shared memory [19], [27] and abandoning VM

isolation [30]. Another set of them aim at widening the data

path, leveraging dependency context between NFs to exploit

potential parallelism. Nevertheless, all of them still assume

the boundary of processing between NFs should be preserved,

which is not critical for scenarios that require extremely low

latency. Different from these approaches, SpeedyBox enables

cross-NF optimization by consolidating the processing of

different NFs at runtime.

Similar approach for different scenarios. A similar insight

that subsequent packets can be cheaply matched is also

proposed in Open vSwitch (OVS) as it uses a Megaflow cache

to consolidate forwarding rules [31]. However, the stateless

forwarding nature and the intrinsically stateless design of OVS

(compared with diverse NFs) makes this approach difficult to

be applied directly in the NFV context. We summarize two

fundamental limitations:

• Stateless forwarding model. OVS is stateless because its

forwarding model is primarily based on OpenFlow [28].

The Megaflow cache assumes that packets from the same

flow (i.e., same five tuple) can be forwarded in the same

way. This is clearly not applicable for many stateful NFs

[45] who decide their behaviors based on packet payload

and internal state. For example, a Maglev Load Balancer

[13] (discussed in §VI) that maintains per-flow state may

update its forwarding behavior (e.g., change destination IP

and port) at runtime if a backend server fails. Achieving this

functionality in OVS is difficult.

• Poor expressiveness for complex NF semantics. OVS has poor
expressiveness to support NFs that require complex compu-

tation. Many modern NFs require payload parsing/inspection

or advanced functions to maintain internal state. For example,

the Snort IDS requires regular matching to inspect packet

payload [9], which is not supported in standard OVS.

The above limitations are hard to handle until the rise of NFV

as a new solution in data path. Contrary to existing approaches,

NFV opens the door to achieving complex state manipulation

and computation directly in the data path. SpeedyBox leverages

this new opportunity.

C. Addressing Design Challenges

• Challenge 1: How to collect the runtime behavior of diverse
NFs at minimum cost? (§IV)
NFs are often developed by multi-vendors with various

behavior. Consolidating their actions requires a common

processing abstraction to describe them in an uniform way. We

analyze some widely-deployed NFs in enterprise networks, and

partition NF processing into (1) header actions that transform

the packet header and (2) state functions that perform payload

inspection or updating NF internal states. For each NF, we

use an extended Match-Action Table (MAT) called Local
MAT to record per-flow header actions and state functions.

We standardize five types of header actions that cover most

transformations on packet headers. To have uniform state

functions, we collect the function handlers and invoke them at

runtime to describe stateful behaviors. (§IV-A)

We design a set of NF instrumentation APIs following the

proposed NF abstraction. Since the abstraction has paved a

way for dissecting NF processing, our APIs are easy to use

and can cover a body of commonly used NFs. The APIs

70

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. SpeedyBox architecture.

only collect the behavior of NF codes and do not change the

original processing logic, and the performance overhead can

be neglected according to our measurement. The modification

is also lightweight with negligible cost, e.g., our modification

on Snort IDS [34] only adds up to 27 lines of code. (§IV-B)

• Challenge 2: How to express the stateful behavior of a
service chain on a new consolidated path? (§V)

Different from static switch rules, many modern NFs are

stateful [15], [16], [40] — packet processing updates states

and states decide packet data path. When consolidating these

stateful NFs, we need to express the equivalent behaviors on

the new data path. If packets traverse the original data path

and trigger state updates, the new path must have its state

updated in the same way. More importantly, if a state reaches

certain conditions and causes future packet processing logic to

be changed (we define it as an event), the new path must be

updated to the new processing logic immediately. We carefully

design the Global MAT, that enables a novel execution model

for state functions (packet processing updates states), and also

contains an Event Table to check the conditions for triggering

an event (states decide packet processing). If a condition of

an event is satisfied, the actions on packets and state would

be modified accordingly. Thus, SpeedyBox is able to express

stateful behaviors of a service chain. (§V)

III. DESIGN OVERVIEW

SpeedyBox aims at building a fast data path for flows in

service chains with the logic of the original NF service chain

retained. For each flow, we define the initial packet as the first

packet after a connection is established (e.g., after the 3-way

TCP handshake). As the initial packet traverses a service chain,

SpeedyBox collects how each NF in the chain operates on the

packet and updates NF internal state, with an extend Local

Match-Action Table (MAT). Each NF is associated with a Local

MAT. SpeedyBox then aggregates all the actions/functions and

consolidates them to form a new, logically-equivalent data path

in a Global MAT. For subsequent packets of the same flow, they

are directed to the new path for faster execution. However, some

NFs may change their flow actions during runtime, e.g., when

certain internal states reach certain conditions or thresholds.

To this end, SpeedyBox proposes an Event Table to trigger

events in a timely manner to update the behaviors of NFs.

Figure 1 shows the architecture of SpeedyBox, and also

illustrates the workflow with an example of packet walkthrough.

Once a packet arrives, the Packet Classifier first generates its

FID by hashing the 5-tuple. The FID will remain consistent

throughout the service chain (even if the 5-tuple is modified).

Next, the Packet Classifier directs initial and subsequent packets

to two different paths:

• For an initial packet, the Classifier sends it to the first NF

of the original service chain. As the packet traverses each

NF, the associated Local MAT records the processing rule

of the flow, containing header actions and state functions .

Additionally, NFs also register events that can update NF

processing rules. The events can be triggered using the

FID of the packet to match the pre-defined events in the

Event Table at runtime. As soon as the service chain finishes

processing the packet, SpeedyBox notifies the Global MAT

to consolidate the rules for the FID from all Local MATs. In

this example, NF1 receives a packet with FID=1, and set the

header action as modify(DPort), which means modifying

the destination port of packets with FID=1. Similarly, NF2

set the header action of FID=1 as modify(DIP) that

modifies the destination IP, and also specifies the state

function (StateFunc) for packets from FID=1 according

to its own processing rules (e.g., inspecting packet payload,

incrementing flow counters, etc).

• For a subsequent packet, the Classifier sends it to the Global

MAT. The Event Table first checks if an associated event

has been triggered (state.matchCondition: a general

callback handler that can be implemented with user-defined

functions). If not, the Global MAT directly applies the cached

consolidated header action (modify(DIP,DPort)) on the

packet, and also executes the state functions by invoking the

function handlers (StateFunc) as recorded by previous

packets. If the conditions of an event are satisfied (e.g., a

counter exceeds certain threshold), SpeedyBox updates the

header actions or state functions of the associated flows (e.g.,

Maglev changes the destination IP of a flow [13]), so that

subsequent packets can have updated processing rules.

IV. LOCAL MAT

The Local MAT is responsible for recording NF actions or

functions on packets and state. We first propose an unified

NF processing abstraction based on our analysis of NFs in

enterprise networks (§IV-A), and then discuss how to build the

Local MAT with SpeedyBox’s APIs (§IV-B).

A. NF Processing Abstraction

Since NFs can be diverse and complex, to effectively

consolidate their actions, we propose a uniform abstraction for

typical NFs. We examine and analyze the processing logic of

several representative NFs in enterprise networks [35], such

as Gateways (for conferencing/media/voice), Firewalls, VPNs,

Load Balancers, NATs and IDSs. According to the survey in

[35], these NFs are widely deployed, constituting about 82.7%

of the total number of deployed middleboxes. We discuss the

scope of our approach in §IV-A3.

71

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

Overall, we observe that NF processing can be partitioned

into two parts: (1) Header Action: transformation of the packet

header or packet drop (for basic routing), and (2) State Function:

operations on NF internal state and inspection of packet

payloads (for advanced middlebox functioning).

1) Header Action: A header action denotes how an NF

operates on the packet header or if it drops the packet. Based

on the observations of the examined NFs and related work [30],

[14], we define five standardized header actions for NFs:

(1) Forward: NFs like Network Monitors only parse the

packet for internal state update, and then forward it without

modification; (2) Drop: NFs (e.g., Firewalls) may drop the

packet, and set the associated packet descriptor to nil in our

implementation; (3) Modify: NFs may modify the header

fields to achieve basic routing. Examples include Gateways,

Load Balancers and NATs; (4) Encap and Decap: Some NFs

may add/remove headers for/from a packet. For instance, VPNs

add an Authentication Header (AH) for each packet before

forwarding (encap), and remove the AH when the other end

receives the packet (decap) [42].

2) State Function: A state function denotes an advanced

function that an NF invokes to update internal state or inspect

the packet payload. Flows traversing an NF may be assigned

different state functions, since they can be assigned to different

conditional branches in the NF’s code logic. Note that payload

inspection is also cast as a state function, because the results of

the inspection also results in state update in the NFs examined

(e.g., in Snort, the inspection function will set the flags of

malicious flows). Based on how state functions interact with

payloads, we set three types for state functions: (1) read the

payload (READ), (2) write the payload (WRITE) and (3) do

not read or modify payload (IGNORE).

State functions are usually wrapped as callback functions

in an NF’s code, e.g., deep packet inspection in Snort IDSs

[34] and per-flow packet counting in network monitors. Some

NF programs may not wrap their logic in the form of callback

functions, which will take more effort for us to carefully

modify them. Fortunately, we find that popular NFs like Snort

incorporate their main functionality in properly-decoupled

callback functions, making it easy to integrate them into

SpeedyBox (§VI-C). We use the handler of a callback function

to represent the state function and store it in the Local MAT.

During NF runtime, SpeedyBox executes the state function by

invoking the associated handler.

Some state may be shared by a collection of flows [15],

[36], and multiple flows may share a state function. In this

case, we record the state function for all associated flows. In

implementation, we carefully design the processing concurrency

and avoid runtime conflicts or incorrect logic (§VI-A).

3) Applicable Scope for SpeedyBox: While we recognize

that it would be ideal for SpeedyBox to support any general

NF (and chain), NFs whose functionality largely relies on

buffering a sequence of packets and operating on them are

intrinsically not well-suited for our framework. Examples of

such functions include caches and WAN optimizers [16], [35],

which require executing a loop waiting for packets. The NFs

// Extract FID from the packet
int nf_extract_fid(packet_descriptor*)

// Add header action for the flow
void localmat_add_HA(int FID, HA header_action,

args* arg_list)

// Add the handler as a state function
// function type: (PAYLOAD) WRITE/READ/IGNORE
void localmat_add_SF(int FID, function_handler*,

int function_type, args* arg_list)

// Register event with update action or function
void register_event(int FID, condition_handler*,

args* arg_list, HA update_action,
update_function_handler*)

Fig. 2. SpeedyBox APIs for network functions to build their Local MATs.

would then perform operations on the aggregate of packets

buffered. For these NFs, the performance bottleneck likely is in

having to wait for the batch of packets to arrive rather than the

packet processing overhead. SpeedyBox’s gains are particularly

significant with NFs that perform per-packet processing using

a Match-Action primitive (i.e., act on receiving each packet),

such as a Firewall, Load-Balancer or NAT. SpeedyBox would

be applicable to a large fraction of functions typically used

in an enterprise network [35], with 82.7% NFs falling into

this category. The rest of these NFs, while also able to be

incorporated in SpeedyBox’s framework, are actually inefficient

with runtime consolidation.

B. Building the Local MAT with Easy-to-Use APIs

The NF processing abstraction enlightens us to design easy-

to-use APIs for NFs to build their Local MATs. Note that our

goal is to minimize the modification to NF code, or at least not

change the major processing logic. Specifically, SpeedyBox

provides several interfaces to help programmers to specify

NF header actions, state functions and events respectively, as

shown in Figure 2. When adding header actions, we provide a

set of standardized header actions, with additional arguments,

such as which header field to modify. When adding a state

function, we provide the handler of the state functions along

with function arguments, and also the associated function type

(payload read/write/ignore) (§IV-A2). For registering an event,

we provide a condition_handler that checks whether

certain conditions in the NF are matched. We also need to

provide the action/function for updates.

At NF runtime, the Local MAT adds header actions and state

functions for each flow in sequence. Maintaining the order

of state functions is crucial to guarantee logic equivalence,

otherwise code dependencies may be violated. We use a queue

data structure to maintain the sequence in our implementation.

V. GLOBAL MAT

A. Guidelines for Consolidation

We first present two important observations on NF behaviors,

which are crucial guidelines for the consolidation.

• Observation 1: In most cases, per-flow header actions and
state functions is deterministic by the initial packet.

72

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

For instance, we manually inspect the source code of Snort

[9] and observe that Snort assigns a rule matching function for

each flow as initial packet arrives. For subsequent packets, the

same function is invoked repeatedly. This is also true for other

Layer-3 NFs, such as Load Balancers, NATs and Firewalls.

For example, once a NAT allocates a header action with a new

destination IP and port for a new flow, the same header action

applies to all subsequent packets in the same flow.

• Observation 2: In other cases, some NFs can trigger “events”
that update their header actions or state functions during
runtime. Specifically, an event is triggered when some
internal state is updated to a certain condition.
This point addresses the corner cases of the first observation,

and is crucial for some NFs. For example, the Google Maglev

load balancer [13] can reroute an established flow to a new

backend server (with IP as new_ip) using consistent hashing,

if the original backend server (with IP as origin_ip) fails.

Suppose the original Maglev header action for a flow is

modify(DIP, origin_ip). After the rerouting, the header

action needs to be updated as modify(DIP, new_ip). This

runtime action update during is called an event in SpeedyBox.

Based on our observations of existing NFs, an event is triggered
only when some internal state is updated. For common NFs,

events do not occur frequently, but are crucial parts of NF

stateful logic.

Overall, Observation #1 implies that the consolidated result

can be reused and do not change in most cases, unless otherwise

notified (by an event). Observation #2 addresses that we should

first check if an event has been triggered, and then decide

whether the consolidated result can be reused.

B. Consolidating Header Action

There are five heterogeneous header actions (§IV-A1) in-

cluding modify, encap, decap, forward and drop. This

heterogeneity imposes difficulties for consolidation. We seek

to synthesize the header actions aggregated from NFs with an

algorithm. The input of the algorithm is a list of header actions,

and the expected output should be a consolidated header action.

We omit the forward action in the following because we

set it as the default action if no other action is provided. As

SpeedyBox goes through the action list, we discuss how it

consolidates different actions:

• Drop: As long as the list contains at least one drop action,

the final action should be drop. In this case, we set the

packet descriptor to null and release the packet memory.

• Encap/Decap: We use a stack to simulate the header

encapsulation and decapsulation process. Encapsulation is

pushing a new header to the (packet) stack, and decapsulation

is popping a existing header from the stack. If two adjacent

encap and decap actions operate on the same header, we

eliminate them simultaneously.

• Modify: If two modify actions change the same field

but with different values, we select the value of the latter

modify. If they operates on different header fields, we

consolidate the two modify actions into one using bit oper-

ations. Assume P0 is the original packet, and denote P1, P2

as the output of modify1 and modify2, respectively. Suppose

modify1 and modify2 touch different fields, the output packet

can be expressed as P0

⊕
[(P0

⊕
P1)|(P0

⊕
P2)]. The

⊕

operator means XOR. We iterate the process incrementally

and obtain the output.

In addition to IP and Port fields, we may also need to modify

the remaining fields of packets, such as checksum, TTL, MAC

address and packet length. Since these fields are unlikely to

be part of the main processing logic of NFs according to

our observations, we modify these fields at the end of the

consolidation, ensuring that SpeedyBox outputs valid packets.

C. Consolidating State Function

Consolidating state functions requires executing the functions

aggregated from different Local MATs. The key challenge here

is maintaining the stateful logic of the original chain in the

new data path. We first describe how we we execute the state

functions (§V-C1), and then introduce how we optimize the

execution with parallelism (§V-C2).

1) Executing State Function with the Event Table:
SpeedyBox executes state functions in the order that they

are added to the Local MATs, so that the NF processing logic

is retained. We define all state functions of a rule as a state
function batch, and all state functions in a batch should be

executed in sequence. When executing state function batches,

SpeedyBox triggers events when conditions are matched. Based

on Observation #2 (§V-A), the Global MAT checks whether
certain conditions are matched as soon as the associated states
have been updated. This motivates us to design the Event Table.

The Event Table supports triggering NF-registered events and

enables updating NF actions/functions at runtime. SpeedyBox

lets NFs specify under what conditions an event should be
triggered and also the associateed update action/function,

leveraging the register_event interface provided by

SpeedyBox exposed APIs (Figure 2). When registering an

event, a condition_handler is needed that specifies how

to check whether an event is triggered and what the exact

condition is. In addition, we also need to provide the associated

header action/state function handler for updates.

Figure 3 demonstrates the workflow of the Event Table using

an example of a DOS Prevention NF for illustration. The DOS

Prevention NF detects a DOS attack by monitoring the number

of TCP SYN flag on a per-flow basis. The top left table is the

original global MAT before consolation, and the bottom right

table is its consolidated global MAT. If the number of SYN

flags seen exceeds a threshold (flow1_cnt>100), the Event

Table (bottom left) triggers an event to replace the modify
action with a drop action (top middle), and a new consolidated

global MAT is computed (top right).

2) Optimization: Combining State Function Execution
with Parallelism: To further reduce the latency, we incor-

porate parallel execution [47], [38] into SpeedyBox with our

customizations. While the state functions in a batch should

be executed sequentially to guarantee the equivalence of NF

internal logic, we find that some state function batches across

NFs can be executed in parallel. We analyze the dependency

73

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. State function execution with the Event Table to express stateful behaviors.

TABLE I. DEPENDENCY ANALYSIS OF STATE FUNCTION PARALLELISM.
FOR CHAIN NF1 → NF2 , SF batch1 AND SF batch2 ARE THE STATE

FUNCTION BATCH OF NF1 AND NF2 , RESPECTIVELY.

SF batch1

SF batch2 Payload
Write

Payload
Read

Payload
Ignore

Payload Write N N Y
Payload Read Y Y Y

Payload Ignore Y Y Y
(Y: parallelizable, N: not parallelizable)

between two batches in Table I. The way that batch1 affects the

processing of batch2 comes from packet payload dependency.

Note that in our problem space, there is no packet header

dependency because such dependency is already eliminated

by the Global MAT, which aggregates the header actions

belonging to the same flow. Each state function has different

actions on the payload: write/read/ignore (§IV-A2). Since each

batch contains multiple state functions, we determine the

action property of an entire batch as: the action of the state

function that has the highest priority in the batch (priority:

WRITE>READ>IGNORE). For example, a batch with {read,

read, write} is determined as write. If batch1 and batch2 both

read the payload, we can pass the packet payload descriptor to

them simultaneously, enabling parallel execution. However, if

batch1 writes the payload, they cannot be parallelized unless

batch2 ignores the payload.

VI. IMPLEMENTATION

A. Execution Environment

We have implemented our SpeedyBox prototype on top

of BESS [2] and OpenNetVM [46]. Both of them are well-

known NFV platforms and are already leveraged by some

academic researches [29], [47], [38], [23]. We briefly introduce

our customizations on these two platforms.

BESS: BESS ([17]) typically implements an entire service

chain as a single process on a dedicated core . We implement

the Global MAT as a global array that can be accessed by

all Local MATs. We develop the packet classifier using the

Task class, the Global MAT executor as a new BESS module,

and construct a service graph with two branches: one branch

for initial packets that traverse the original service chain, and

the other for subsequent packets that traverse the Global MAT.

The entire customization adds about 1900 LOC to BESS.

OpenNetVM: OpenNetVM [46] runs each NF on one

dedicated core, and interconnects NFs leveraging RX/TX

queues that deliver shared memory packet descriptors. We

develop the Global MAT at the NF Manager, and the packet

TABLE II. NFS IMPLEMENTED FOR EVALUATION AND ADDITIONAL LOC
TO INTEGRATE THEM INTO SPEEDYBOX.

Network Function
LOC for Core
Functionalities

Added LOC

Snort 1129 27 (+2.4%)
Maglev 141 23 (+16.3%)
IPFilter 110 20 (+18.2%)
Monitor 223 19 (+8.5%)

MazuNAT 358 20 (+5.6%)

classifier at the Manager’s RX queue thread. The consolidation

of Local MATs rules involves inter-core communication. We

leverage the existing inter-core message queues (implemented

as ring buffers in OpenNetVM) to achieve this. Our extensions

to OpenNetVM have around 2800 LOC.

B. Packet Classifier

FID Consistency: To guarantee FID consistency across

Local MATs, the Packet Classifier hashes the five tuple of

a packet header to a 20 bits FID, and attaches it directly to the

packet as a meta-data. This 20 bits sequence can represent more

than 1 million concurrent flows (enough for our evaluations).

We can extend the FID length to accommodate more flows.

Once assigned, the meta-data remains consistent along the

service chain in the data path, so that every NF in the chain

can use a consistent FID. Since both BESS and OpenNetVM

deliver packets across service chains with lightweight packet

descriptors, our approach does not incur high packet copying

overhead. When the packet leaves the service chain, SpeedyBox

detaches the meta-data from the packet.

Tracking Flow State: In order to clean up stale rules for

flows whose connections have been closed, the Packet Classifier

also monitors the TCP FIN and TCP RST flag. Once the final

packet of a flow (with FIN or RST flag) arrives, we delete the

corresponding rule from the Global MAT and all Local MATs

and free the associated memory space.

C. Network Functions

We implement five popular network functions and integrate

them into SpeedyBox with our APIs, and the additional lines

of code (LOC) for core functionalities is shown in Table II.

Snort [34] is an IDS that inspects traffic against the rule

lists to classify the packets. We derive the source code of

Snort from [9] and migrate it to our system. We first modify

the libpcap-based Snort into DPDK-compatible, and then cast

the handlers of the packet inspection functions as the state

74

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

1 2 3
0

1000

2000

3000

4000

5000
C
PU

cy
cl
e
pe
rp
ac
ke
t

Header Action

Original-init
SpeedyBox-init
Original-sub
SpeedyBox-sub

(a) BESS

1 2 3
0

1000

2000

3000

4000

5000

C
PU

cy
cl
e
pe
rp
ac
ke
t

Header Action

Original-init
SpeedyBox-init
Original-sub
SpeedyBox-sub

(b) OpenNetVM

Fig. 4. Effect of header action consolidation. (init and sub for initial and
subsequent packets)

functions. And since Snort does not modify packets, we set

Snort with forward as the header action.

Maglev [13] is Google’s software Load Balancer for net-

working. A Maglev NF distributes flows to their destinations

like normal Load Balancer, while also tolerates network faults

(e.g., a destination machine fails unexpectedly) leveraging

consistent hashing and connection tracking. Since Maglev is not

open-sourced, we implement our Maglev NF logic by closely

following the consistent hashing algorithm presented in Section

3.4 of Maglev’s paper [13]. We set per-flow events for Maglev

as updating the destination IP for existing flows when failure

occurs, and emulate unpredictable failure events by setting the

condition handlers with random trigger functions.

IPFilter [3] is a Firewall prototype that parses flow headers

and checks against a header blacklist with linear scanning. For

flows that match the blacklist, we set them with drop actions,

or otherwise with forward actions.

Monitor is a network monitor that is commonly used in

academia [30], [38], [35]. It maintains packet counters for each

each flows, and sets each flow with a forward action and a

state function to maintain the associated counter.

MazuNAT [6] closely resembles the NAT module in Click

[22] that translates the IP and port for flows. We omit irrelevant

functionalities in [6] such as ICMP packets handling. MazuNAT

sets each flow with a modify action.

VII. EVALUATION

Our evaluation is performed on a testbed system having an

Intel Xeon E5-2660 v4 CPU (2.00GHz) containing 14 physical

cores, with 32GB of RAM and an Intel Corporation 82599ES

10-Gigabit NIC. The OS runs Linux kernel 4.4.0-31. To test the

performance, we deploy a DPDK-based Packet Generator [4]

on another server (also equipped with a 10G NIC) and directly

connect it to the testbed. In the following figures and tables,

SBox denotes SpeedyBox, and ONVM denotes OpenNetVM.

A. Performance Microbenchmarking

We created several micro-benchmarks to evaluate the basic

performance of two optimizations in SpeedyBox. Specifically,

we evaluate how header action consolidation and state function

parallelism improve service chain performance. All experiments

in this section are performed using 64B packets.

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Pr
oc
es
si
ng
R
at
e
(M
pp
s)

State Function

BESS
BESS w/ SBox
ONVM
ONVM w/ SBox

(a) Processing Rate

1 2 3
0

1

2

3

4

5

Pr
oc
es
si
ng
La
te
nc
y
(µ
s)

State Function

BESS
BESS w/ SBox
ONVM
ONVM w/ SBox

(b) Processing Latency

Fig. 5. Effect of state function parallelism.

1) How does header action consolidation improve perfor-
mance: We vary the number of header actions to evaluate how

consolidating them saves CPU cycles for processing. We use a

chain with 1-3 IPFilter NFs. The results are representative, and

comparable with other NFs, so we only provide IPFilter results

here, while the evaluation results of other NFs are in [7].

Figure 4(a) and 4(b) show the results with BESS and

OpenNetVM respectively. For comparisons, we plot the CPU

processing cycles of the chain w/ and w/o SpeedyBox for

initial and subsequent packets. The results are similar on both

frameworks. Thus we focus on BESS for analysis. As shown

in Figure 4(a), for both chains w/ and w/o SpeedyBox, the

initial packet needs to spend much more processing cycles

than subsequent packets due to the initialization processes (e.g.,

linear matching of ACL lists for new flows). For subsequent

packets, when there is only one header action, SpeedyBox

costs more processing cycles than the original chain because of

the extra overhead for recording the processing rules into the

Local MAT; when the number of header actions increases to

2 and 3, consolidation reduces 40.9% and 57.7% CPU cycles

than original chain. Theoretically, this reduction can be as high

as N−1
N for N header actions.

As a special case, we next demonstrate that consolidating

header action can enable early packet drops, thus reducing CPU

cycles. We use a chain with three IPFilters (NF1, NF2, NF3)

and set the corresponding actions as {forward, forward,

drop} for all flows, respectively. Originally packets in a flow

need to traverse the entire chain and are dropped at NF3.

With SpeedyBox, however, subsequent packets can be dropped

early when they arrive at the chain because of header action

consolidation. Table III shows that SpeedyBox enables early

packet drop and saves ∼65% CPU cycles.

2) How does state function parallelism improve perfor-
mance: Parallelizing state functions can increase processing

rate and reduce overall execution latency. We use a chain

of 1-3 identical synthetic NFs for evaluation. The synthetic

NF has no header action, and has one state function that is

TABLE III. EARLY PACKET DROP SAVES CPU CYCLES.

(CPU cycle) NF1 NF2 NF3 Aggregate
BESS 530 582 577 1689

BESS w/ SBox — — — 591 (-65.0%)
ONVM 510 570 540 1620

ONVM w/ SBox — — — 570 (-64.8%)

75

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

1082

1202

581
632

BESS OpenNetVM
0

300

600

900

1200

1500

C
PU

cy
cl
e
pe
rp
ac
ke
t

Original
w/ SBox

(a) CPU cycle

0.601
0.543

0.894

0.552

BESS OpenNetVM
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
oc
es
si
ng
R
at
e
(M
pp
s) Original

w/ SBox

(b) Processing rate

Fig. 6. Consolidation and parallelism improves the performance of the Snort
+ Monitor chain.

equivalent to the Snort packet inspection (does not modify

payload). According to the analysis in Table I, two of these

state functions can be parallelized. We then vary the number

of the synthetic NFs (# of state function) in the chain and

measure the processing rate and per-packet latency.

Figure 5(a) shows the processing rate results. For BESS, the

processing rate of the original chain decreases as number of

state function increases. Nevertheless, SpeedyBox prevents the

processing rate from decreasing a lot by carving out a new

parallel data path. For instance, compared to the original BESS

(sequential), BESS with SpeedyBox achieves 2.1x processing

rate. For OpenNetVM, however, the processing rate stays

relatively stable. This is because the original OpenNetVM

uses pipelined processing and will not sacrifice processing rate

when the number of state functions increases.

Figure 5(b) shows the latency benefits of SpeedyBox. For

example, SpeedyBox reduces the latency by 59% for BESS

when there are three state functions. Suppose we have N
identical state functions, the optimal latency reduction can be
N−1
N . Note that when there is only one state function, there

exists a little performance degradation due to extra overhead

caused by collecting NF behaviors.

B. Service Chain Performance

1) How does each optimization contribute to the overall
performance improvement: Next, we show how the header

action consolidation and state function parallelism contribute

to the overall improvement by using a chain with a Snort NF

followed by a Monitor. Both of them have header actions and

state functions, and thus will benefit from the two optimizations

simultaneously. Figure 6 shows the CPU cycle reduction

and processing rate improvement of the Snort+Monitor chain.

SpeedyBox reduces CPU cycles of per packet processing by

46.3% and 47.4% for BESS and OpenNetVM, respectively. The

reduction is due to the header action consolidation. Moreover,

SpeedyBox improves the processing rate of BESS by 32.1%

by incorporating parallelism. Note that SpeedyBox does not

improve the processing rate of OpenNetVM. This is because

the original OpenNetVM already uses pipelined processing, and

the processing rate will not drop significantly when chaining

two NFs. This observation is identical with the results provided

in OpenNetVM’s paper (Figure 2 in [46]).

Next, Figure 7 analyzes how SpeedyBox reduces the pro-

cessing latency and how much each optimization contributes

BESS ONVM
0.0

0.5

1.0

1.5

2.0

2.5

3.0

SF (58.9%)

HA (41.1%)

SF (50.6%)

Pr
oc
es
si
ng
La
te
nc
y
(µ
s)

Original
w/ SBox

HA (49.4%)

Fig. 7. Latency reduction of the Snort+Monitor chain and the contributions
of two optimizations (HA denotes header action consolidation, SF denotes
state function parallelism).

to the reduction. For BESS, the overall processing latency

is reduced by 35.9%; of this reduction, we measure that

49.4% is contributed by header action consolidation while

the remaining 50.6% by state function parallelism. The result

on OpenNetVM is similar, except that parallelism makes up

a larger portion (58.9%) than that in BESS. This is due to

the inter-core communication overhead in OpenNetVM, which

introduces extra CPU cycles and partially reduces the benefit

of header action consolidation.

2) Can SpeedyBox support long chains: Next, we demon-

strate how SpeedyBox supports long chains without violating

performance. We use a chain with 1-9 IPFilters. The ACL rules

of the IPFilters are carefully modified to avoid packet drops.

Note that in OpenNetVM, we can only support a maximum

chain length of 5, limited by the number of cores on our

testbed; for BESS, there is no such limit as all NFs are part

of one process. The processing rate and latency results are

shown in Figure 8. The latency performance of SpeedyBox is

nearly irrelevant to the chain length, indicating that SpeedyBox

can significantly reduce the latency for long chains thanks

to cross-NF consolidation. Besides, SpeedyBox can maintain

high processing rate for BESS when running long chains. And

again, SpeedyBox does not improve the processing rate of

OpenNetVM, since the original OpenNetVM adopts a pipelined

model that already ensures high processing rate regardless of

the chain length [19], [46].

3) How does SpeedyBox perform in real-world service
chains: Finally, to understand how SpeedyBox performs under

real world setups, we derive two service chains from [24], [26]

with some customization: we replace the general notion of

“IDS” in [26] with our Snort IDS. Similarly, we also replace

“NAT” with MazuNAT, “Load Balancer” with Maglev, and

“Firewall” with IPFilter.. We measure the flow processing time
as the aggregated time spent processing all packets in a flow,

demonstrated in Figure 9. We use the popular datacenter trace

as the input traffic [11]. Since the payloads in the trace are

null for anonymization, we synthesize the testing traffic with

customized payloads according to the inspection rules in Snort.

Chain 1: MazuNAT+Maglev+Monitor+IPFilter. This

chain is identical with the example in Motivation (§II). We do

not set events for Maglev in this experiment. SpeedyBox can

consolidate the header actions of all four NFs in the chain. The

processing time of all flows in the trace is shown in Figure

9(a). For BESS, SpeedyBox reduces the flow processing time

76

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9
0

1

2

3

4

Pr
oc
es
si
ng
La
te
nc
y
(µ
s)

Service Chain Length

BESS BESS w/ SBox ONVM ONVM w/ SBox

0

1

2

3

4

5

6

BESS BESS w/ SBox ONVM ONVM w/ SBox

Pr
oc
es
si
ng
R
at
e
(M
pp
s)

Fig. 8. Performance of SpeedyBox in supporting a service chain with different
lengths (The maximum length in OpenNetVM is 5 due to core number limits).

at 50th percentile by 39.6%. For OpenNetVM, the reduction

of flow processing time at 50th percentile is 40.2%.

Chain 2: IPFilter+Snort+Monitor. Figure 9(b) shows the

results. SpeedyBox parallelizes the state function execution of

Snort and Monitor, and consolidates the header actions of all

three NFs. For BESS, SpeedyBox reduces the flow processing

time at 50th percentile by 41.3%. For OpenNetVM, SpeedyBox

reduces the flow processing time at 50th percentile by 34.2%.

The results demonstrate that SpeedyBox can significantly

reduce the processing latency under real world workload.

C. Empirical Tests on Equivalence

SpeedyBox is designed by strictly retaining the logic

equivalence of the original NF and service chain. To test

the equivalence, we sample and test some chains. Generally,

the methodology is to inject various packets into the system

to cover different conditional branches in the code. If the

system generates identical packet outputs and state, we are

confident that SpeedyBox guarantees equivalence. We show

three representative case studies:

1) Testing Snort (different conditional branches): We

inject three sets of flows containing suspicious payloads that

match all the three types of inspection rules (Pass/Alert/Log)

of Snort to cover the conditional branches sufficiently. We

examine and find the log outputs are identical.

2) Testing Maglev (containing events): We inject a flow

with 10 packets into Maglev, and set the associated event

condition as “change the destination IP from ip1 to ip2, from

the sixth packet”. Denote the sequence of the 10 packets as

pkt1, pkt2, ... and pkt10. We check the packet outputs and

find the destination IP of pkt1-pkt5 is ip1, and the destination

IP of pkt6-pkt10 is ip2. The remaining headers and packet

payloads going to ip2 are verified to be true. Thus, the event

has been triggered correctly.

3) Testing real world chains (comprehensive test): We also

test the equivalence of SpeedyBox in real world service chains

in §VII-B3. In the first chain’s Maglev NF, we set events

for 20% flows during mid-stream. We find that there is no

difference between the packet output for both chains. Further,

we compare the per-flow counters of the Monitor and the log

outputs of Snort. Results show that the value of all counters and

the Snort logs are all identical with and without SpeedyBox.

And the events of Maglev have been triggered correctly for all

associated flows.

Our empirical tests show that NFs consolidated in SpeedyBox

have equivalent logic with the original NFs and chains.

10 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

Flow Processing Time (µs, log-scale)

BESS
BESS w/ SBox
ONVM
ONVM w/ SBox

(a) Chain 1

10 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

Flow Processing Time (µs, log-scale)

BESS
BESS w/ SBox
ONVM
ONVM w/ SBox

(b) Chain 2

Fig. 9. CDF of flow processing time of datacenter traces in different real
world service chains.

VIII. OTHER RELATED WORK

Consolidation in NFV: To our best knowledge, CoMb [35]

is the first to introduce the notion of consolidation into NFV

literature. However, CoMb focus on consolidating network

functions on single physical machine to enable better resource

management. We inherit the scenario that multiple NFs are

densely packed on one machine, but we focus on reducing the

processing redundancy in service chains.

Redundancy elimination. OpenBox [12] proposes to elim-

inate redundant logic across NFs, by dissecting NF into basic

elements, reorganizing the element graph and identifying the

redundant operations. However, OpenBox does not enable

packet early drops and parallel execution. SpeedyBox enables

these two optimizations through consolidation. SNF [20]

also proposes redundancy elimination in NFV by synthesizing

the service chains, while the authors do not mention how to

implement complex NFs such as Snort in SNF’s framework.

SpeedyBox provides flexible framework for state management

and also enables state functions parallel execution.

Optimizations in software switches: VFP [14] extends

OVS’s idea by introducing a transposition engine that records

actions of the first packet and apply the transposition directly to

subsequent packets, similar to OVS’s methodology. However,

existing solutions of OVS and VFP are not applicable in NFV,

since NFs are too diverse to consolidate and some NFs may

require runtime logic update that makes the data path mutable.

SpeedyBox overcomes the two challenges with stateful MATs

and the Event Table.

IX. CONCLUSION

There are substantial processing redundancies across NFs in

a service chain because NFs are typically developed indepen-

dently. In this paper, we propose SpeedyBox, a low latency

NFV framework to eliminate the redundancy by consolidating

functionality in service chains, without sacrificing modulariza-

tion. Evaluation shows that SpeedyBox can significantly reduce

processing latency in real world service chains.

X. ACKNOWLEDGEMENT

The authors would like to thank the anonymous review-

ers for their valuable comments and advice. This work is

supported by National Key R&D Program of China under

Grant 2017YFB1010002, NSFC (No. 61872211), NSFC (No.

61802225), and the US NSF Grant CRI-1823270.

77

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Anonymous repository of speedybox. https://github.com/FastPathNFV.

[2] Bess. https://github.com/NetSys/bess.

[3] Click ipfilter. http://read.cs.ucla.edu/click/elements/ipfilter.

[4] Dpdk packet generator. http://dpdk.org/browse/apps/pktgen-dpdk/.

[5] A low-latency nfv infrastructure for performance-critical
applications. https://software.intel.com/en-us/articles/
low-latency-nfv-infrastructure-for-performance-critical-applications.

[6] Mazunat. https://github.com/kohler/click/blob/master/conf/mazu-nat.
click.

[7] Microbenchmark results of speedybox. https://github.com/FastPathNFV/
Microbenchmark.

[8] Qos challenges in the nfv/5g networks. http://www.mycom-osi.com/blog/
qos-challenges-in-the-nfv-5g-networks.

[9] Snort. https://www.snort.org/.

[10] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. pfabric: Minimal near-optimal datacenter transport. In
ACM SIGCOMM Computer Communication Review, volume 43, pages
435–446. ACM, 2013.

[11] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 267–280. ACM, 2010.

[12] A. Bremler-Barr, Y. Harchol, and D. Hay. Openbox: a software-defined
framework for developing, deploying, and managing network functions. In
Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference,
pages 511–524. ACM, 2016.

[13] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein.
Maglev: A fast and reliable software network load balancer. In 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 523–535, Santa Clara, CA, 2016. USENIX Association.

[14] D. Firestone. Vfp: A virtual switch platform for host sdn in the
public cloud. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation, pages 315–328. USENIX
Association, 2017.

[15] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward software-
defined middlebox networking. In Proceedings of the 11th ACM Workshop
on Hot Topics in Networks, pages 7–12. ACM, 2012.

[16] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. Opennf: Enabling innovation in network
function control. In ACM SIGCOMM Computer Communication Review,
volume 44, pages 163–174. ACM, 2014.

[17] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy. Softnic:
A software nic to augment hardware. Dept. EECS, Univ. California,
Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-155, 2015.

[18] D. Hong, J. Shin, S. Woo, and S. Moon. Considerations on deploying
high-performance container-based NFV. In Proceedings of the 2nd
Workshop on Cloud-Assisted Networking, CAN@CoNEXT 2017, Incheon,
Republic of Korea, December 12, 2017, pages 1–6, 2017.

[19] J. Hwang, K. Ramakrishnan, and T. Wood. Netvm: high performance
and flexible networking using virtualization on commodity platforms.
In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, pages 445–458. USENIX Association, 2014.

[20] G. P. Katsikas, M. Enguehard, M. Kuzniar, G. Q. Maguire Jr, and
D. Kostic. SNF: Synthesizing high performance NFV service chains.
PeerJ Computer Science, 2016.

[21] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon. Nba (network
balancing act): A high-performance packet processing framework for
heterogeneous processors. In Proceedings of the Tenth European
Conference on Computer Systems, page 22. ACM, 2015.

[22] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
click modular router. ACM Transactions on Computer Systems (TOCS),
18(3):263–297, 2000.

[23] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu. Nfvnice: Dynamic backpressure
and scheduling for nfv service chains. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 71–84.
ACM, 2017.

[24] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma. Service
Function Chaining Use Cases In Data Centers. Internet-Draft draft-ietf-
sfc-dc-use-cases-06, Internet Engineering Task Force, Feb. 2017. Work
in Progress.

[25] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, and P. Cheng.
Clicknp: Highly flexible and high-performance network processing with
reconfigurable hardware. In Proceedings of the 2016 conference on ACM
SIGCOMM 2016 Conference, pages 1–14. ACM, 2016.

[26] W. S. LIU, H. Li, and O. Huang. Service Chaining Use Cases. Internet-
Draft draft-liu-service-chaining-use-cases-00, Internet Engineering Task
Force. Work in Progress.

[27] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici. Clickos and the art of network function virtualization.
In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, pages 459–473. USENIX Association, 2014.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[29] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker. E2: a framework for nfv applications. In Proceedings
of the 25th Symposium on Operating Systems Principles, pages 121–136.
ACM, 2015.

[30] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker.
Netbricks: Taking the v out of nfv. In OSDI, pages 203–216, 2016.

[31] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, et al. The design and
implementation of open vswitch. In NSDI, pages 117–130, 2015.

[32] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
Simple-fying middlebox policy enforcement using sdn. ACM SIGCOMM
computer communication review, 43(4):27–38, 2013.

[33] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/merge:
System support for elastic execution in virtual middleboxes. In NSDI,
volume 13, pages 227–240, 2013.

[34] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In
Lisa, volume 99, pages 229–238, 1999.

[35] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation, pages 24–24. USENIX Association, 2012.

[36] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, et al. Rollback-recovery
for middleboxes. In ACM SIGCOMM Computer Communication Review,
volume 45, pages 227–240. ACM, 2015.

[37] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: network pro-
cessing as a cloud service. ACM SIGCOMM Computer Communication
Review, 42(4):13–24, 2012.

[38] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu. Nfp: Enabling network
function parallelism in nfv. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages 43–56. ACM,
2017.

[39] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter tcp
(d2tcp). ACM SIGCOMM Computer Communication Review, 42(4):115–
126, 2012.

[40] W. Wu, Y. Zhang, and S. Banerjee. Automatic synthesis of nf models
by program analysis. In Proceedings of the 15th ACM Workshop on Hot
Topics in Networks, pages 29–35. ACM, 2016.

[41] X. Yi, J. Duan, and C. Wu. Gpunfv: a gpu-accelerated nfv system. In
Proceedings of the First Asia-Pacific Workshop on Networking, pages
85–91. ACM, 2017.

[42] J. Yonan. Openvpn, 2007.

[43] W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood.
Flurries: Countless fine-grained nfs for flexible per-flow customization.
In Proceedings of the 12th International on Conference on emerging
Networking EXperiments and Technologies, pages 3–17. ACM, 2016.

[44] W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood.
Performance management challenges for virtual network functions. In
NetSoft Conference and Workshops (NetSoft), 2016 IEEE, pages 20–23.
IEEE, 2016.

[45] W. Zhang, G. Liu, A. Mohammadkhan, J. Hwang, K. Ramakrishnan,
and T. Wood. Sdnfv: flexible and dynamic software defined control of
an application-and flow-aware data plane. In Proceedings of the 17th
International Middleware Conference, page 2. ACM, 2016.

[46] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood. Opennetvm: a platform for high
performance network service chains. In Proceedings of the 2016 workshop

78

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

on Hot topics in Middleboxes and Network Function Virtualization, pages
26–31. ACM, 2016.

[47] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang. Parabox: Exploiting parallelism for virtual network
functions in service chaining. In Proceedings of the Symposium on SDN
Research, pages 143–149. ACM, 2017.

79

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:51:37 UTC from IEEE Xplore. Restrictions apply.

